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Abstract. Over the past years, several approaches have been developed to create algorithmic music composers. 
Most existing solutions focus on composing music that appears theoretically correct or interesting to the listener. 
However, few methods have targeted sentiment-based music composition: generating music that expresses human 
emotions. The few existing methods are restricted in the spectrum of emotions they can express (usually to two 
dimensions: valence and arousal) as well as the level of sophistication of the music they compose (usually 
monophonic, following translation-based, predefined templates or heuristic textures). In this paper, we introduce a 
new algorithmic framework for autonomous Music Sentiment-based Expression and Composition, titled MUSEC, 
that perceives an extensible set of six primary human emotions (e.g., anger, fear, joy, love, sadness, and surprise) 
expressed by a MIDI musical file, and then composes (creates) new polyphonic, (pseudo) thematic, and diversified 
musical pieces that express these emotions. Unlike existing solutions, MUSEC is: i) a hybrid crossover between 
supervised learning (SL, to learn sentiments from music) and evolutionary computation (for music composition, 
MC), where SL serves at the fitness function of MC to compose music that expresses target sentiments, ii) 
extensible in the panel of emotions it can convey, producing pieces that reflect a target crisp sentiment (e.g., love) 
or a collection of fuzzy sentiments (e.g., 65% happy, 20% sad, and 15% angry), compared with crisp-only or two-
dimensional (valence/arousal) sentiment models used in existing solutions, iii) adopts the evolutionary-
developmental model, using an extensive set of specially designed music-theoretic mutation operators (trille, 
staccato, repeat, compress, etc.), stochastically orchestrated to add atomic (individual chord-level) and thematic 
(chord pattern-level) variability to the composed polyphonic pieces, compared with traditional evolutionary 
solutions producing monophonic and non-thematic music. We conducted a large battery of tests to evaluate 
MUSEC’s effectiveness and efficiency in both sentiment analysis and composition. It was trained on a specially 
constructed set of 120 MIDI pieces, including 70 sentiment-annotated pieces: the first significant dataset of 
sentiment-labeled MIDI music made available online as a benchmark for future research in this area. Results are 
encouraging and highlight the potential of our approach in different application domains, ranging over music 
information retrieval, music composition, assistive music therapy, and emotional intelligence. 
Keywords: Music Sentiment Analysis, MIDI, Evolutionary Algorithms, Algorithmic Composition, Supervised 
Learning, Fuzzy Classification. 

 

1. Introduction 
Long before the existence of computers, music experts attempted to develop computational procedures to 
automatically compose music. Notably, the great composer Wolfgang Amadeus Mozart made a dice game to create a 
bespoke eight-bar minuet using random dice tosses. Yet, such efforts paled in comparison with the sophisticated and 
appealing musical pieces that human composers would produce. This aspect of composition faded into the background 
as time elapsed until computers became more accessible toward the end of the twentieth century, where interest in 
algorithmic music composition was rekindled. The Illiac Suite (Di Nunzio A. 2014; Sandred O. et al. 2009) was one 
of the first computer-assisted composition tools, written in 1957 by Hiller and Isaacson. Since then, several 
approaches and models have been adopted to automate the music composition process.   

Early approaches have focused on “translating” phenomena and patterns (extracted from texts, images, or 
measurements) into musical pieces using so-called translational models (mapping variations from patterns into music), 
e.g., (Hiller L. 1970; Hiller L. et al. 1959; Wolfram Tones Inc. 2005). Other studies have leveraged well-known 
mathematical models (e.g., formal grammars or Markov chains), oftentimes in tandem with musical rules and 
stochastic processes, to create novel and well-structured music, e.g. (Husarik S. 1983; Serra M. H. 1993). A common 
criticism for these approaches is that they are quite rigid in representing music variability and expressiveness 
(Papadopoulos G. et al. 1999). More recent methods have exploited machine learning techniques to emulate a human 
composer’s “inspiration” process by learning from existing compositions (getting “inspiration”) to create new ones, 
e.g., (Adiloglu K. et al. 2007; Reimer M. A. et al. 2014). Other recent methods have utilized evolutionary approaches 
which strive to compose a large number of musical pieces and ultimately keep the “best” ones, simulating the 
biological process of natural selection. Yet, traditional evolutionary algorithms require full-fledged pieces of music as 
input (initial population), to produce (mutated and crossed) pieces as output. In a recent approach in (Molina A. et al. 
2016), the authors adopted an evolutionary-developmental (Evo-Devo) model to construct more elaborate pieces from 
simpler ones. Initial results showed that the produced compositions were deemed appealing by human listeners. 
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While most existing solutions have focused on composing music that appears theoretically correct or interesting 
to the listener, few methods have targeted sentiment-based music composition: generating music that expresses human 
emotions. Existing sentiment-based solutions reduce human emotions (e.g., anger, fear, surprise, etc.) to two main 
dimensions: valence (pleasure received from an emotion), and arousal (engagement with the emotion), e.g., 
(Hoeberechts M. et al. 2009; Huang C. et al. 2013), which tend to diverge indicating a potential bias or ambiguity in 
the model (Russell J. 1980). Another limitation of existing methods is the level of sophistication of the music being 
composed: producing monophonic pieces1 (Hoeberechts M. et al. 2009; Kirke A. et al. 2017), or relying on predefined 
templates or heuristics to extend a base monophonic melody into polyphonic music (Kirke A. et al. 2011).  

The main goal of our study is to develop a sentiment-based music composer that can produce musical pieces that 
are: i) expressive in the human emotions they can convey, ii) more advanced in the level of sophistication of the music 
textures that they produce, while being iii) appealing and enjoyable by listeners. To this end, we introduce MUSEC, a 
framework for autonomous Music Sentiment-based Expression and Composition, designed to perceive an extensible 
set of six human emotions (e.g., anger, fear, joy, love, sadness, and surprise) expressed by a symbolic MIDI2 musical 
file, and then compose (create) new original musical pieces (in MIDI format) with sophisticated polyphonic textures 
that can express these sentiments. To achieve this, MUSEC first “learns” how to perceive emotions in music using a 
supervised machine learning process. We view this as a required step toward sentiment-based composition, similarly 
to human composers who first need to appreciate a human emotion to be able to truly reflect it in their compositions. 
Then, MUSEC starts composing using a dedicated evolutionary-developmental approach, by evolving simple (atomic) 
music patterns into more sophisticated and full-fledged pieces that express the user’s target sentiments. 

More specifically, MUSEC consists of four main modules: i) music (symbolic and frequency-domain) feature 
parser (FP), ii) music theory knowledge base (KB, including music-theoretic operations and rules to produce “correct” 
music), iii) music sentiment learner (SL, consisting of a non-parametric fuzzy classifier3 coined with a dedicated 
music similarity evaluation engine) that learns to infer sentiments in music from exposure to previously analyzed 
musical pieces, and iv) music sentiment-based composer (MC: the core component of MUSEC, consisting of an 
evolutionary-developmental framework, with specially tailored evolution, mutation, and sentiment-based trimming 
operators), to generate new, original, and diversified music compositions that express target emotions.  

Different from existing solutions (cf. Section 3.2.4), MUSEC is a hybrid crossover between supervised learning 
(SL, to learn sentiments from music) and evolutionary computation (for music composition, MC), where SL serves at 
the fitness function of MC to compose music that expresses target sentiments. In turn, the composer (MC) feeds the 
learner (SL) in order to better infer sentiments from exposure to newly composed pieces. Also, MUSEC is expressive 
and extensible in the panel of emotions it can convey, producing pieces that reflect a target crisp sentiment (e.g., love) 
or a collection of fuzzy sentiments (e.g., 65% happy, 20% sad, and 15% angry), where the number of sentiment 
categories can be extended following the user’s preferences, compared with crisp-only or two-dimensional 
(valence/arousal) sentiment models used in existing solutions. In addition, it adopts the evolutionary-developmental 
model, using an extensive set of specially designed music-theoretic mutation operators (trille, staccato, repeat, 
compress, single suspension, etc.), which are stochastically applied within the evolutionary process, to add atomic 
(individual chord-level4) and thematic (chord pattern-level) variability to the composed polyphonic pieces, compared 
with traditional evolutionary solutions producing monophonic and non-thematic music.  

We conducted a large battery of tests to evaluate MUSEC’s effectiveness in sentiment learning accuracy, music 
composition quality, enjoyment (appeal), and accuracy in expressing target emotions, involving assessments by non-
expert music listeners as well as expert music instructors and composers5. Inter-tester correlations were evaluated and 
matched with MUSEC’s scores to account for human listener subjectivity. We also evaluated MUSEC’s efficiency in 
feature parsing time, sentiment expression time, and music composition time. To our knowledge, this is most 
extensive experimental evaluation of a music sentiment analysis and composition approach to date. Our system was 
trained on a specially constructed set of 120 MIDI pieces, including 70 sentiment-annotated pieces: the first 
significant dataset of sentiment-labeled MIDI music made available online6 as a benchmark for future research in this 
area. Results are encouraging and highlight the potential of our approach in different application domains, ranging 
over sentiment-based music retrieval, music composition, assistive music therapy, and emotional intelligence. 

The remainder is organized as follows. Section 2 provides background in music theory and the MIDI standard. 
Section 3 reviews the literature in music sentiment analysis and algorithmic composition. Our MUSEC framework is 
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developed in Section 4. Section 5 evaluates the solution’s theoretical complexity. Section 6 presents experimental 
results. Potential applications are discussed in Section 7, before concluding with future directions in Section 8. 

 

2. Background 
Our study builds upon concepts from music theory and uses the MIDI format to process musical files. We therefore 
provide a brief presentation of both concepts in the following subsections. Interested readers can refer to (Danhauser 
A. 1994) for a more detailed review of music theoretic concepts and paradigms. 
 

2.1. Music Theory 

Music is innate to human beings by nature, who get sentimentally attached to musical pieces or have their moods 
altered by them, by instinctively and effortlessly following a tune’s beat or melody. However, when asked to properly 
describe a musical piece’s features, non-expert listeners struggle to convey their own perceptions to others. This is 
where music theory comes into play. Music theory is a formalization of the relationships and interplay between the 
different frequencies that make up the music we listen to. In other words, it defines rules and recommendations to help 
describe, reproduce, and compose music (Danhauser A. 1994). In the following, we only provide a brief overview of 
the music theoretic constructs covered in our study.  

Music comprises of notes, which combine to create a piece’s overall melody. Notes denote a certain frequency 
being played at a given point in time. This abstraction is further supported by the notions of chroma and pitch. On one 
hand, chromas define a logarithmic classification of notes based on their fundamental frequencies1. In occidental 
music2 theory, we identify 12 main chroma classes (i.e., C, C#/D♭, D, D#, E♭, E, F, F#/G♭, G, G#/A♭, A, A#/B♭, B), 
such that every note invariably belongs to one class. On the other hand, pitch helps distinguish between two notes 
sharing the same chroma class, based on their different fundamental frequencies. For instance, a note with a frequency 
of 440 Hz and another with a frequency of 880 Hz both belong to the A chroma class, but have different pitches. 

The concept of intervals is introduced to distinguish between notes. Intervals describe the gap between two 
musical notes, as a logarithmic measure of the ratio of the two notes’ fundamental frequencies. Intervals are an 
essential construct used for determining the harmony and appeal of music, and as such have been extensively studied 
and categorized. Intervals are measured in tones: a unit which helps perform interval computations using frequency 
additions rather than frequency ratio multiplications. Popular intervals in music theory include the perfect fourth (2.5 
tones), the perfect fifth (3.5 tones), the minor third (1.5 tones), and the octave (6 tones), where a tone denotes the 
smallest gap between two distinct notes having the same chroma. 

The concepts we have discussed above are also used when many notes are sounded together, forming so-called 
chords, consisting of an appealing combination of notes. A chord is a group of notes (normally three or more) that are 
played together following a certain interval structure. Intervals are used to assess chords’ structure and musicality, 
while chromas and pitches help identify a particular realization of a certain chord structure. More formally, intervals 
define a chord’s type, which in occidental music theory could be major, minor, augmented or diminished, while 
pitches and chromas define a chord’s root note (i.e., the note that best represents the chord). Manipulating a chord’s 
structure whilst maintaining the same use of pitches creates chord inversions, i.e., chords having a different relative 
ordering of notes, which are very popularly used in music composition. The sequence of chords played in a piece, also 
known as its chord progression, can very accurately describe the said piece’s musicality. Connecting consistent chord 
progressions in a musical piece is therefore an integral part of any music composition task. 

A musical key is a set of interval-related pitches and chords, whose combinations produce coherent and 
enjoyable music. Analogously to chords, a key also has its own root note and type (which is usually: major or minor). 
The key type used in a composition is known to correlate with its overall “feel” or perception by human listeners, with 
minor keys usually producing sadder compositions and major keys usually producing happier and more upbeat 
musical pieces, e.g., (Hevner K. 1935; Livingstone S. R. et al. 2010). For greater beauty and unpredictability, 
composers can also change keys within the same musical piece: a process known as modulation. 

Music texture is how the melodic, rhythmic, and harmonic materials are combined in a composition, thus 
determining the overall quality (or so-called sophistication) of the piece. Here, we distinguish between two grand 
types of textures: monophonic where a single melodic line is played with no accompaniment (i.e., only one note is 
played at a time), and polyphonic, where multiple melodic lines (i.e., more than one note) are played simultaneously.  
 

2.2. MIDI Standard 

MIDI, short for Musical Instrument Digital Interface, is a standardized symbolic music format designed to record 
musical performances using so-called high-level music features (i.e., features based on musical note abstractions, such 
as musical key, chord progressions, etc.), rather than traditional low-level audio/sound features (i.e., features based on 
frequency data used to describe audio formats, such as spectral components of audio samples and frequency 
histograms, etc.).  
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A MIDI file consists of several tracks, each of which can play a different instrument independently of the other 
tracks. For any MIDI file, the basic time unit is the tick, regulating all note onsets and time measurements within the 
MIDI standard. Within every track, a set of MIDI events can occur at a certain tick position to indicate a change 
within the melody or in the overall piece. These events usually carry MIDI messages, e.g., meta messages which add 
further information to a MIDI file such as the piece’s key and tempo (i.e., the speed at which a musical piece is 
played); as well as NOTE ON and NOTE OFF messages which respectively signal the start or end of a certain note. 
The latter messages, which help define the onset of a note in MIDI, provide two main parameters: i) velocity: A 7-bit 
number between 0 and 127 indicating the intensity with which the note is played (the higher velocity, the more 
powerfully and intensely the corresponding note is played), and ii) MIDI pitch: A 7-bit number between 0 and 127 
specifying the musical pitch to be played, where each value maps to a specific note frequency. The tick position of the 
message’s event specifies the time at which notes are turned on and off.  

In the following, we rely on the MIDI format in devising our abstractions of musical note and musical piece in 
MUSEC (described in more detail in Section 4). 

 

3. Literature Review  
Developing an autonomous and self-learning sentiment-based music composition system requires combining 
knowledge from different domains in the literature, namely music sentiment analysis and algorithmic music 
composition, which we briefly review in the following subsections. We also describe the few existing works that 
specifically address the problem of sentiment-based music composition1, to better situate and compare our approach 
w.r.t.2 its predecessors. 
 

3.1.  Music Sentiment Analysis 

Music Sentiment Analysis (or MSA) is one of many hot problems within the broader field of Music Information 
Retrieval (MIR), which deals with the representation, description, storage, and retrieval of affective information from 
music (Demopoulos R.J. et al. 2007; Kirke A. et al. 2009). Much like standard IR systems, MIR systems (and MSA 
systems in particular) convert music documents into feature representations, which are then utilized to retrieve 
relevant information. In the case of MSA, the retrieved information comes down to crisp sentiment categories or fuzzy 
sentiment scores.  
 

3.1.1.  Sentiment Representation Models 

Performing MSA first requires a sentiment model through which human emotions can be represented, so that they can 
be relayed to music feature vectors. In this context, two main categories of models have been adopted in the literature: 
i) dimensional, and ii) categorical. On one hand, following the dimensional approach, every emotion is mapped to a 
certain dimensional space, such that all emotions and their combinations can be represented in the said space. Though 
various models have been proposed in the literature (Ravi K. et al. 2015; Zentner M. et al. 2010), the one most 
commonly adopted in MSA is Russell’s valence-arousal model (Russell J. 1980), which maps human emotions to two 
essential dimensions: i) valence: the pleasure received from an emotion, and ii) arousal: the engagement with the said 
emotion. On the other hand, following the categorical approach, human emotion is represented by a set of pre-defined 
sentiment categories (e.g., anger, surprise, fear, love, etc.), the combination of which is believed to portray the 
complete human spectrum of emotions (Zentner M. et al. 2010). This model has been extended from crisp (∈{0, 1}) 
to scaled (∈[0, 1]) sentiment categories (Abbasi A. et al. 2008; Subasic P. et al. 2001), allowing a more expressive 
representation of the sentiment space. Methods in this category are commonly used in text-based sentiment analysis 
(Ravi K. et al. 2015) are have been recently adapted toward MSA (Hoeberechts M. et al. 2009).  

Both models mentioned above present advantages and disadvantages. The dimensional model, on one hand, 
provides a reduced dimensional space (namely 2 dimensions) which is relatively easier (faster) to process 
(computationally), compared with a multi-category space of n (crisp, or scaled) emotion categories. Nonetheless, 
states where both valence and arousal dimensions converge (e.g., both valence and arousal are high, or both are low) 
occur more often than states were they diverge (Russell J. 1980), indicating a potential bias or ambiguity in the model 
(as stated by the model’s creator in (Russell J. 1980)), which in turn highlights the model’s limited expressiveness in 
distinguishing different emotions. On the other hand, the categorical model provides an intuitive and expressive 
approach to represent human emotions, where different emotion categories are used to represent the human emotion 
spectrum. More or less categories can be considered following the user’s needs, which in turn decreases or increases 
computational efficiency. However, this also begs the question of how to choose the proper subset of emotion 
categories that best fit the application or scenario at hand, which remains an open debate among researchers in the 
field (Morreale F. et al. 2016). 

In our current study, we adopt the extended (scaled) categorical model, considering six primary categories of 
emotions commonly adopted in the literature (Ekman P. 1993): anger, fear, joy, love, sadness, and surprise. More (or 
less) emotion categories can be later considered following the user’s preferences. 
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3.1.2.  Music Analysis Features 
Musical features range over high-level symbolic features (a.k.a.1 music-theoretic features, based on musical note 
abstractions) and low-level frequency-domain features (a.k.a. statistical features, based on frequency data used to 
describe audio formats) (Demopoulos R.J. et al. 2007). Many approaches in the literature combine both feature ranges 
into so-called multimodal feature vectors (Schedl M. et al. 2014). With the introduction of the MIDI format in the 
1980s, more sophisticated musical features became available, fueling further interest in this area. Some approaches in 
MIR have also built on breakthroughs in text-based sentiment analysis to improve music sentiment analysis, by 
incorporating music lyrics as an additional entry to be analyzed (Panda R. et al. 2013). (SACEM 2016)  

One of the earliest MSA solutions, developed in the late 1980s by Katayose et al. (Katayose H. et al. 1989) firmly 
placed its emphasis on purely music-theoretical features. In this approach, the authors develop an artificial music 
expert, a system that can detect and treat music like a human: through its emotions. To do this, they introduced 
“quasi-sentiments”, a semantic/emotional meaning behind a given piece, so as to emulate how a human would react to 
a piece. Their extraction technique consists of mapping musical phenomena to these quasi-sentiments using a set of 
pre-defined rules. For example, a certain chord progression could correspond to a sad emotion, while a certain key or 
tempo could indicate a happy emotion. Through a simple rule-based approach, the authors were able to use musical 
features parsed from the input musical piece to infer its underlying sentiments. 

More recent efforts attempt to use as many features as possible, be it content-based (symbolic and/or sampled 
audio) or textual (lyrics of a song) to extract the sentiments from a given musical piece (Fleischman M.B. et al. 2013; 
Panda R. et al. 2013; Wohlfahrt-Laymanna J. et al. 2017; Xiao H. et al. 2010). For example, Panda et al. (Panda R. et 
al. 2013) perform sentiment-based retrieval based on a set of 253 simple musical features, 98 frequency domain 
features, 278 symbolic features, and 19 lyrical features. From this very large feature set, the authors seek to select the 
best combination of features to perform the sentiment analysis task. Results, based on optimal feature selection and 
retrieval performance testing for multiple machine learning and classification algorithms (SVM2, k-NN3, etc.) clearly 
showed that using multiple feature types can improve retrieval performance. Indeed, the best feature configuration for 
frequency domain-only features yielded an optimal f-value of 44.3%, while a hybrid feature selection of 15 frequency 
domain and 4 symbolic features scored an f-value of 61.1% (Panda R. et al. 2013). On one hand, this improvement 
shows the potential of using multimodal features, but it also shows that lyrical features did not help to improve system 
performance in this particular study. On the other hand, other studies, e.g., (Panda R. et al. 2013; Xiao H. et al. 2010), 
have highlighted the positive impact that lyrical features can make in MIR/MSA. In (Xiao H. et al. 2010), Hu and 
Downie incorporate lyrical features into their testing and report a 9.6% accuracy improvement over the best frequency 
domain-only features they tested. Approaches in (Fleischman M.B. et al. 2013; Wohlfahrt-Laymanna J. et al. 2017) 
have suggested considering user profiles, moods, and context information, in addition to content-based and textual 
music features, to generate sentiment-aware and contextually meaningful music playlists.  

Therefore, we can see that the latest trend: i.e., performing sentiment analysis using multiple feature values; is 
receiving more interest and tends to produce better results. Yet, one can also realize that this domain is still very much 
in flux as extracting the best features for music sentiment analysis and retrieval remains an open research topic.   

Interested readers can refer to (Demopoulos R.J. et al. 2007; Orio N. 2006; Song Y. et al. 2012) for detailed 
reviews on MIR and MSA. 
  
3.2.  Algorithmic Music Composition 

Algorithmic Music Composition (AMC) is a research field aiming to produce autonomous computer systems capable 
of producing/composing new music, e.g., (Dubois R.L. 2003; Fernandez J. et al. 2013; Wolfram Tones Inc. 2005). 
Researchers in Artificial Intelligence (AI) view AMC as a sub-problem of the bigger problem of computer creativity 
(Boden M. A. 1994). Even today, it remains extremely difficult for an AI agent to innovate and to create something it 
has not previously seen in a thoroughly convincing fashion. This probably stems from a lack of understanding of the 
creative process itself, due to which many creativity theories and models were developed (Schank R. C. et al. 1995). 
In this context, several approaches have been adopted to automate the music composition process and emulate human 
composers, which we group in four main categories: i) translation-based solutions, ii) mathematical model-based 
solutions, iii) machine learning-based solutions, and iv) evolutionary solutions.  
 

3.2.1.  Translation-based Solutions 

Following the translation-based approach (also known as: data sonification), the computer accepts as input any piece 
of data, e.g., text, image, measurement, or random process, and then “translates” it into music using a pre-defined set 
of (data specific) rules (Fernandez J. et al. 2013; Freeman J. 2015). One example of this approach is WolframTones 
(Wolfram Tones Inc. 2005), developed by WolframAlpha, which uses cellular automata patterns selected at random 
from a set of possible patterns, fed into dedicated progression rules and functions to generate new music. To ensure 
that the produced music is also appealing, pre-defined filters are applied to eliminate any potential causes of musical 
dissonance. The promise of this approach lies in that new and unexpected music can be created without the need for 
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sophisticated algorithms, since the novelty lies in the input itself. However, this promise is counterweighed by the 
difficulty in selecting appropriate inputs and converting them reliably into music. To perform these tasks, special care 
needs to be taken in designing the appropriate filters.  
 

3.2.2.  Mathematical Model-based Solutions 

A second category of methods is mathematical model-based solutions, where mathematical constructs like formal 
grammars (Freeman J. 2015) and Markov Chains (Verbeurgt K. et al. 2004) are mapped to musical events so as to 
produce music. Using a formal grammar, an alphabet of musical states is defined, as well as a set of starting states and 
production rules to extend the initial musical states (McCormack J. 1996). Lindenmayer Systems, a.k.a. L-systems, are 
a special kind of formal grammars which are adapted to music composition (Manousakis S. 2006; Worth P. et al. 
2005). They are a variant of formal grammars previously successfully applied to biological modeling (Prusinkiewicz 
P. et al. 1990) and allow parallel rewriting of grammar strings. For instance, DuBois’s approach in (Dubois R.L. 2003) 
relies on L-systems, where symbols are defined as notes (musical objects), and dedicated transformations are used to 
create music. To support polyphony, brackets are used to surround a multitude of notes (objects). This approach also 
uses another L-system to add synthetic accompaniment to the generated music. 

Though the formal and expressive structures of grammars can constitute a solid model for music composition, a 
common criticism of grammar-based methods is that they seem quite rigid in representing music diversity and 
expressiveness (Papadopoulos G. et al. 1999). To remedy this, some approaches have incorporated stochastic 
techniques to learn grammar parameters using Markov Chain models (Demopoulos R.J. et al. 2007; Fernandez J. et al. 
2013). Following this approach, experts define musical states and transition probabilities to allow the system to move 
between states and generate music. State transition probabilities are inferred from previous states (i.e., states at 
previous iterations of the system). The larger the number of previous iterations considered in probability inference, the 
farther back a system reaches in its “memory” of states and transitions to perform decision making in its present 
iteration. Here, the usage of memory presents a quality/complexity trade-off (Fernandez J. et al. 2013). On one hand, a 
memory-less system (where present state transitions are independent of the previous states) has a relatively simpler 
transition probability matrix, but will probably behave more randomly and might seem less fit to produce organized 
music structures. On the other hand, a memory-based system takes previous states into account, and thus tends to 
produce more structured and better organized musical pieces, but is much more complicated to implement and to 
develop, particularly given the size of the resulting transition matrix.  
 

3.2.3.  Machine Learning-based Solutions 

Some approaches have investigated machine learning-based solutions, in an attempt to learn from existing 
compositions so as to create new ones. Machine learning techniques can be used either as a standalone component to 
compose music directly (Reimer M. A. et al. 2014), or as part of a larger approach to learn parameters, such as 
learning transition probabilities with more recent Markov Chain-based approaches (Verbeurgt K. et al. 2004). 

A common technique used in this context is Artificial Neural Networks (ANNs) (Kotsiantis S. B. 2007). ANNs 
are a parametric computational model designed to mimic the human brain by learning data with a set of parameters of 
fixed size: defining the structure and functionality of the so-called artificial brain or ANN. They consist of artificial 
neurons, which receive one to several stimuli and produce a single output. They are generally organized into several 
layers1 and their activation functions are usually non-linear. Most commonly, these networks are fed examples so as to 
adjust their stimuli weights in order to achieve the desired output. This type of training is referred to as supervised 
learning2, where experts prepare a set of labeled musical pieces (referred to as the training set) through which they 
train their networks and “teach” them to compose new pieces. Training pieces are either fed into the network as a 
single example (i.e. the piece itself is one training example), or in chunks (such that a single piece is temporally 
divided into several training examples). For instance, the authors in (Reimer M. A. et al. 2014) utilize multiple neural 
networks, organized in two layers, a feature layer and a creative layer, to create music. The ANNs used are known as 
ART (Adaptive Resonance Theory) neural networks, which are designed to train and test in real-time, and to train one 
example at a time. The feature layer consists of three ARTs, where each ART assesses a candidate input musical note 
based on three separate criteria: i) pitch, ii) the piece’s overall melodic continuity, and iii) the melodic interval 
between the pitch and its predecessor. Based on the given input, every ART suggests its own continuation pitch, based 
on its own criteria. These suggestions are then used as input for the creative layer. The creative layer is the ultimate 
decision-making component in this approach. It takes the three previously computed suggestions and selects the one 
which changes its network weights the most. The rationale behind this decision-making process is that musical 
novelty is related to weight change: the more change is produced by a candidate note, the more innovative and 
attractive it is (Reimer M. A. et al. 2014). Eventually, the creative layer produces an output note, which in turn is fed 

                                                 
1  An ANN with several hidden layers between the input and the output layers is called a deep neural network or a deep learner. 
2  It is a machine learning approach which allows the learning of a function that maps an input (e.g., musical piece) to an output (e.g., sentiment 

category or sentiment score) based on sample input-output pairs, so-called labeled training data, where each sample pair consists of a given input 
object (e.g., a music feature vector) and a desired output value (e.g., a sentiment category or a sentiment score). The produced mapping function is 
an approximation of the true mapping function between the sample training pairs (Kotsiantis S.B., 2007). 



back into the feature layer, at which point the process starts anew, until a long enough monophonic piece is composed. 
A similar approach using ANNs is utilized in (Burton A. R. 1998) to learn and identify drum percussions. 

However, the parametric nature of ANNs has its strong and weak points. On one hand, a set of fixed size 
parameters allows to simplify the learning process, since parametric assumptions about the ANN architecture and 
functionality (number of layers, network connectivity, activation functions, and activation thresholds, among others) 
remain independent of the number and nature of the training musical pieces considered. On the other hand, a set of 
fixed size parameters also limits what can be learned by the ANN: no matter how many or how different input music 
one feeds the parametric ANN model, it will not change its mind about how many parameters it needs, which tends to 
limit its expressiveness. This is the reason we adopt a non-parametric learning method in our approach (Section 4.3).  

 
3.2.4.  Evolutionary Solutions 

Finally, evolutionary algorithms1 have been developed to attempt to create music in a way much like nature creates 
individuals, organisms, and species. Following this approach, experts define the structure of their so-called 
“individuals”, their properties, and corresponding evolution (crossover and mutation) mechanisms to produce new and 
diverse generations of offspring individuals. A fitness function is carefully designed to select the best among existing 
individuals (as potential survivors of their generation, and candidates for mating to produce offspring), so as to 
emulate the process of natural selection (Abu Arqub O. et al. 2014; Goldberg D. 1989; Whitley D. et al. 2012).  

Generally, evolution is emulated following two methods. The first method follows the so-called traditional 
evolutionary model, where an individual’s structure remains intact, and only its genes’ expressions change, e.g., 
(Marques M. et al. 2000; Matic D. 2010; Ozcan E. et al. 2008; Pavlov S. et al. 2014). For instance, the authors in 
(Pavlov S. et al. 2014) adopt the traditional evolutionary model where they define their individuals as being n-bar 
musical pieces. Mutations that an individual (piece) can undergo include note pitch changes, note duration changes, 
and note position swaps. To emulate crossover, offspring (new pieces) randomly choose their 4 bars from their parents 
(pieces from the previous generation), such that the offspring form mixes of their parents. The authors utilize a music-
theoretic fitness function to assess the quality of the interval jump between a composition’s pitches, in order to create 
musically-correct monophonic pieces. Similar approaches are developed in  (Marques M. et al. 2000; Matic D. 2010; 
Ozcan E. et al. 2008), where the authors represent music based on different rhythmic and melodic features, such as 
breaks and relative pitches. Modified genetic operators allow to change the scheduling of pitches and breaks in order 
to produce new pieces, while preventing premature convergence using a music-theoretic fitness function. 

A second evolutionary method is the so-called Evolutionary-Developmental (or Evo-Devo) model (Molina A. et 
al. 2016), a high-level abstraction of the evolution process where individuals are considered to be initially very 
rudimentary, only to grow in sophistication as generations pass. In other words, the offspring are not simply mixes of 
their parents’ gene material, but are composite aggregates of the latter. Here, an offspring’s chromosome consists in 
part of mutated and crossed genes, to which is then aggregated other genetic material from individuals of the previous 
generation, producing a more sophisticated and complex genetic organism in every subsequent generation. The 
approach ends when individuals reach the amount (length) of sophistication required. This approach was used by 
IAMUS (Diaz-Jerez G. 2011), an artificial composer which compositions were deemed appealing to human listeners 
and have been performed in theatres to the public.  

Considering the above classification, the approach adopted in our study can be viewed as a hybrid crossover 
between: i) an evolutionary composer agent who integrates ii) a non-parametric machine learning agent serving as its 
fitness function evaluator. Also, different from most approaches above which were designed to create musical pieces 
that appear theoretically correct or interesting, our solution adds a central functionality: producing music that 
expresses (reflects) sentiments (in the form of crisp emotions, e.g., love, sadness, or fuzzy emotions, e.g., 65% 
happiness, 35% anger). 
 

3.3.  Sentiment-based Music Composition 

In recent years, few research efforts have sought to supplement AMC models with the ability to create compositions 
that reflect human emotions, much like human composers who create their own compositions in order to express their 
feelings. Interest in this problem is relatively recent, with almost all related works and publications appearing over the 
last few years, e.g., (Hoeberechts M. et al. 2009; Huang C. et al. 2013; Kirke A. et al. 2011; Kirke A. et al. 2017; 
Livingstone S. R. et al. 2010; Morreale F. et al. 2016). Most methods in this area fall within the translation-based 
AMC category, with some methods partly including simple mathematical-based AMC constructs.  

In an initial study in (Livingstone S. R. et al. 2010), Livingstone et al. provide a set of rules mapping musical 
features, such as tempo and key, to the music’s expected valence/arousal response. This set of rules (cf. examples in 
Table 1) provides a simple framework for a translation-based composition process which can produce music by 
manipulating a set of musical features. Lin and Huang use a similar rule-based mapping in (Huang C. et al. 2013) to 
manipulate their compositions’ features, including rhythm and the pitches used. From an input valence/arousal score 

                                                 
1  An evolutionary algorithm can be defined as a population-based metaheuristic optimization algorithm, which uses mechanisms inspired 

by biological evolution, such as reproduction, mutation, crossover, and selection. Candidate solutions to the optimization problem play the role of 
individuals in a population, and the fitness function determines the quality of the solutions. The evolution of the population then takes place after 
the repeated application of the above operators (Goldberg D. 1989; Whitley D. et al. 2012). 



entered explicitly by the user, composition features and their corresponding parameters are manipulated according to 
the previously mentioned rules to produce music. In (Hoeberechts M. et al. 2009), Hoeberechts and Shantz introduce 
the AMEE (Algorithmic Music Evolution Engine) system, which adapts its compositions in real-time to users’ 
appraisals of a set of 10 pre-defined emotion categories, including happiness, sadness, triumph, and defeat, among 
others. In this approach, the system works in a hierarchical manner. It starts by defining high-level structures to the 
music being composed, such as phrases and sections, and then produces low-level realizations of the high-level 
structures, using forced abortions if needed to ensure that the said structure is respected. 

 
Table 1. Sample Musical feature-to-Valence/Arousal mapping rules following (Livingstone S. R. et al. 2010) 

Musical Feature Valence Arousal 

Major Key High Unrelated 

Minor Key Low Unrelated 

High Volume Unrelated High 

Low Volume Unrelated Low 

 

Morreale and De Angeli in (Morreale F. et al. 2016) also exploit Livingstone’s valence/arousal musical rules to 
develop ROBIN, an autonomous composer and composition assistant that can collaborate with users to create 
expressive music. From a user’s gestures in the music room, valence/arousal scores are inferred, from which ROBIN 
manipulates seven features of the composition (including, pitch contour, tempo, mode, complexity, etc.). The 
complexity feature is defined as being the rhythmic irregularity of the piece, and is introduced by the authors to better 
portray users’ emotions. In selecting notes and chord progressions in the composition process, the authors extend the 
simple rule-based translation model toward a more sophisticated mathematical model based on a probabilistic Markov 
process. Another mathematical model-based approach is introduced in (Kirke A. et al. 2011), where the authors 
leverage Livingstone’s rules to perform sentiment-based composition, by obtaining music from EEG 
(Electroencephalogram) measurements. The authors develop a tool that continuously monitors users’ brain activity 
using EEGs for a certain time period, from which it obtains real-time measurements. Then, valence/arousal levels are 
inferred from the users’ EEGs using another set of rules (e.g., high left versus right frontal alpha implies high arousal). 
Similarly to Morreale and De Angeli’s approach in (Morreale F. et al. 2016), the valence/arousal scores are used to 
represent the composer’s understanding of musical features. Yet, the solution in (Kirke A. et al. 2011) offers the user a 
greater control over the composition process by allowing them to specify the musical structure and a (simple 
grammar-like) template of the piece they are composing (such as ABA or ABCA, where A, B, C and D are generic 
pre-defined theme labels), thereby promising better organized musical pieces. 

In (Kirke A. et al. 2017), Kirke and Miranda apply rule-based musical feature mapping to develop a system 
called TRAC (Textual Research for Affective Composition) for creating affective movie soundtracks given an input 
movie script (Kirke A. et al. 2017). In this approach, the authors modify the valence/arousal model and include a third 
dimension: dominance, to reflect the power imposed by an emotion. Valence, arousal, and dominance scores are 
extracted locally throughout the script to obtain a time series for the three dimensions, in order to be used for 
sentiment-based composition. Sentiment extraction is performed at the most basic word-level (using the ANEW 
database (Bradley M. et al. 1999)) and then aggregated at the syntactic structure level (using syntax/parse trees 
(Carnie A. 2013)). Once the three time series are generated, the developed system randomly generates a theme, asks 
the user to specify a piece’s (simple grammar-like) structure (similar to (Kirke A. et al. 2011)), and then generates the 
overall composition based on the perceived sentiment dimensions. 
 

3.4.  Discussion 

To wrap up, we highlight the main issues and limitations facing existing sentiment-based music composition methods. 
First, most existing solutions utilize similar translation-based AMC models (Hoeberechts M. et al. 2009; Huang C. et 
al. 2013; Livingstone S. R. et al. 2010), with some methods partly integrating mathematical (probabilistic or template) 
model-based AMC techniques (Kirke A. et al. 2011; Kirke A. et al. 2017; Morreale F. et al. 2016). As a result, most of 
these methods create music with relatively simple algorithmic processes, where the main challenge lies in selecting 
appropriate inputs and converting them reliably into music. Second, most methods utilize the dimensional approach to 
represent sentiments, where 2 (or 3) sentiment dimensions (namely valence and arousal) allow for easy and fast 
processing, despite the model’s bias and limited expressiveness in distinguishing different emotions (Russell J. 1980); 
compared with the (scaled) categorical approach allowing a more expressive multi-dimensional space of n emotion 
categories (similarly to AMEE (Hoeberechts M. et al. 2009), the only sentiment-based composition method we know 
of to adopt the categorical model). Third, the produced compositions vary in terms of the type of music texture 
(monophonic versus polyphonic), and thus the quality/sophistication of the music produced. On one hand, AMEE 
(Hoeberechts M. et al. 2009) and TRAC (Kirke A. et al. 2017) only produce monophonic pieces, relying on random 
phrase generation and fixed rules for phrase concatenation and transformation. On the other hand, the EEG-based 
composer (Kirke A. et al. 2011) and ROBIN (Morreale F. et al. 2016) produce polyphonic music, albeit using author-
developed heuristics to extend an initial monophonic melody into polyphonic music.  
 



4. MUSEC Framework 
To address most of the limitations above and provide an expressive sentiment-based composer, we introduce MUSEC 
(Music Sentiment-based Expression and Composition) a hybrid sentiment-based AMC framework, integrating non-
parametric machine learning MSA within an evolutionary composition framework. It composes music that reflects 
any crisp or scaled combination of an extensible set of 6 primary human emotions (i.e., anger, fear, joy, love, sadness, 
and surprise) while producing sophisticated and varied polyphonic music textures. MUSEC’s overall architecture is 
depicted in Fig. 1. It is made of four modules: i) music feature parser (FP), ii) music theory knowledge base (KB), iii) 
music sentiment learner (SL), and iv) music sentiment-based composer (MC). 

We develop MUSEC’s modules in the following subsections. 
 

Fig. 1. Simplified activity diagram describing MUSEC’s overall architecture 

 

4.1. Feature Parsing (FP) module 
 

4.1.1.  Musical Features Parsing 
 

MUSEC’s FP module allows converting an input MIDI file into a feature vector representation that is later used for 
sentiment analysis and inference. The feature vector consists of a combination of seven features (4 symbolic and 3 
frequency-domain features that were empirically shown to be effective in describing music (Panda R. et al. 2013)1), 
namely: 

 

− High-level symbolic features: 
 

1) Note density (ND): The number of notes performed per musical time beat, computed by dividing the 
number of notes played in a piece by its total duration in beats. 

2) Note onset density (NOD): The number of distinct note onsets per musical beat. This feature differs from 
the previous one in that two notes played simultaneously count as one onset in computations. Therefore, 
NOD ≤ ND for any given musical piece. A comparison between ND and NOD can yield useful insights on a 
piece’s melodic structure: NOD ˂˂ ND indicates that a piece’s notes are played together (in rigid chords) 
most often, while NOD ≈ ND suggests the notes tend to be played sequentially rather than together. 

3) Dominant key: The key that is most common and most prominent in the musical piece. Unlike the previous 
features, identifying the Dominant Key is not a deterministic process and requires dedicated heuristics and 
music-theoretic knowledge to be extracted and processed from the target piece. In this study, we extract this 
feature following an adaptation of the Bayesian Key-Finding Model2 (Temperley D. 2002) which was 
shown to achieve 91.4 % accuracy3.  

4) Chord progression: The set of chords that best describe the musical melody. This feature is the most 
computationally complex and difficult to parse, and requires the use of heuristics coupled with a maximum-
likelihood inference method to achieve satisfactory performance, which we describe in Section 4.1.2. 

 
 
 
 

                                                 
1   More features could be later added following the user’s needs. 
2  To determine the dominant key, a chroma histogram for the input music file is first computed, denoting the percentage of total piece duration in 

which every chroma can be heard. The histogram is later used to compute likelihood scores using Temperley’s key profiles (Temperley D., 2002). 
A Bayesian Approach. The key with the highest score is finally selected as the dominant key (Temperley D., 2002). 

3   Dominant key misidentification can occasionally occur, particularly for pieces where modulations occur very frequently and for atonal music 
(Temperley D., 2002; Kyogu L., 2008) (e.g., modern music which does not abide by a fixed key). 
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− Low-level frequency-domain features: 
 

5) Piece tempo: The overall rhythm/speed of a musical piece (expressed in Beats per Minute (BPM)). This 
feature can be easily parsed from a MIDI file’s metadata. 

6) Average pitch: A weighted average of every MIDI note’s pitch value, with the weight being the note’s 
duration. This feature provides an indication of the overall pitch at which the musical piece’s notes are 
being played in the frequency domain (designating high, medium, or low pitch).  

7) Average intensity: A weighted average of every MIDI note’s velocity value, with the weight being the 
note’s duration. This features indicates the overall intensity of a piece (e.g., calm or loud). 

 

Note that in order to effectively perform feature parsing from MIDI files, we first process the latter for musical 
notes identification, where a note consists of a MIDI ON followed by a MIDI OFF message. Once identified, these 
messages are processed so as to produce note abstractions consisting of: i) MIDI Pitch, ii) MIDI velocity, iii) starting 
time, and iv) duration value. These abstractions are then utilized as seeds for parsing the aforementioned features. 
4.1.2.  Chord Progression Parsing 

Chord progression parsing remains an open problem in the field of MIR (Demopoulos R.J. et al. 2007), with several 
dedicated studies, e.g., (Kyogu L. 2008; Zenz V. 2007), utilizing sophisticated mathematical methods such as Hidden 
Markov Models or machine learning techniques, in order to infer chords from (audio or symbolic) musical pieces. In 
this context, the state-of-the-art accuracy for symbolic (MIDI) music chord identification tops around 75% 
(Demopoulos R.J. et al. 2007). Hence, in our current study, we put forth a simple heuristic solution to fit the needs of 
our MUSEC framework, reaching 90% accuracy levels1 when applied on MIDI pieces with specific characteristics.  

An activity diagram depicting our chord progression parsing heuristic is shown in Fig. 2. It performs beat-based 
segmentation of a MIDI piece, and then identifies the dominant key in every segment, in order to infer the chord 
progression in the sequence of segments forming the piece. To do so, it first utilizes the piece’s tempo to infer the 
length of a beat (step 1), which is then used to perform segmentation (step 2). Every segment that is less than 4 beats 
long is augmented with a context of 4 beats by combining it with previous and/or subsequent beat segments (step 3). 
Then, the dominant key is computed for every augmented segment (step 4), using the same approach adopted for 
dominant key feature parsing (cf. Section 4.1.1). Given an augmented segment and its dominant key, all chords that do 
not belong to the said key are eliminated (step 5) so as to avoid computing improbable chords, thus eliminating 
potential false positives stemming from decorative notes. At this point, the likelihood scores for every possible chord 
are computed based on the frequency of the said chord’s chromas in the segment’s chroma histogram (step 6). Chord 
likelihood is computed as the product of the chroma frequencies for 3-note chords, and as the product of the highest 3 
frequencies for chords made of more than 3 notes (Zenz V. 2007) (such that the lowest frequency is dropped to 
eliminate bias towards smaller chords). When one or many chords are possible and likely enough (following a 
predefined threshold), the likeliest amongst the possible chords is chosen to label the analyzed segment as being the 
manifestation of the said chord (step 7). In the event that no chords are possible, or that no chord achieves a 
sufficiently high likelihood, the segment being processed is further augmented by adding notes from the subsequent 
beat, before reiterating the same processing on the newly augmented segment in the hope of identifying a chord (step 
8). The process is repeated iteratively until reaching the end of the MIDI file, identifying the piece’s chord progression 
where identical consecutive chords (if any) are combined into one.  

Preliminary experiments on a set of 100 MIDI pieces show that our approach is fairly immune to noise caused by 
decorative notes and ornamentation, and that it performs pretty well on simple and structured music where there is a 
clear separation among chords (reaching 90% accuracy, cf. Section 6). Yet, note that our heuristic chord progression 
extraction solution does err when analyzing more complicated pieces where chords are intertwined (similarly to 
existing solutions in (Kyogu L. 2008; Zenz V. 2007)). 

 

Fig. 2. Simplified activity diagram depicting our chord progression parsing heuristic 
 

                                                 
1   Note that 100% accuracy in chord progression identification is difficult to obtain due to the very nature of chord progressions: where i) the same 

chord progression can be played in so many different ways while still portraying the same musical structure, and ii) it can be often difficult to 
separate between consecutive chords since notes are sometimes combined between them. Our heuristic performs accurately on relatively simple 
music where there is a clear chord structure, and a clear separation between chords with no rapid transitions between them. 
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Note that parsing symbolic features from MIDI files, such as dominant key and chord progression, require music-
theoretic knowledge which we house in a dedicated knowledge base (KB) module. 

 

4.2. Knowledge Base (KB) Module 
 

MUSEC’s KB module is a centralized repository of all necessary music-theoretical properties and methods that other 
MUSEC modules (namely FP, SL, and MC) require in order to perform their own operations. These are highlighted in 
Table 2 and Table 3 respectively.  

For instance, the FP module retrieves Temperley Profile values from KB in order to compute the likeliest key of 
an input piece. The SL module’s similarity evaluation component relies on KB to compute the circle of fifths distance 
between two keys. Also, evolution and mutation components from the MC module invoke support methods from KB 
to identify and build chords, retrieve the notes adjacent to the note being decorated, retrieve relative keys, and identify 
passing notes. The latter functionalities are further described in the following subsections. 

 

Table 2.  Main properties of MUSEC’s KB module 

Property Description Used by 
Temperley Key Profiles Used for likeliest key estimation during dominant key feature extraction (cf. Section 4.1) FP 

Circle of Fifths Used for key similarity evaluation following distance computation within the circle of fifths (cf. 
Section 4.3.2). SL 

Chord Types per root for major 
and minor keys 

List of chord types that can be built on every note of a given key, depending on the key’s type. 
Used for computing the atomic toolbox during the atomic evolution phase (cf. Section 4.4.3). 

MC Alteration Lists They contain the number of flats and sharps per key based on key type and root, and are utilized 
for chord construction (cf. Section 4.4.3). 

String Lists Required to convert pitches and chromas from MUSEC’s internal representation to human-
legible values and labels (cf. Section 4.4.2) 

 
Table 3.  Main methods of MUSEC’s KB module 

Method Input Output Description Used by 

Chord / Key 
Compatibility 

checker 
Chord and Key 

Boolean 

(compatible/not 
compatible) 

Checks whether a chord is part of a key’s seven main chords. 
Used during chord progression parsing to eliminate unlikely 

chord possibilities (cf. Section 4.1.2) 

FE 
Chord Likelihood 

Estimation 
Musical 
Segment 

Chord Likelihood 
Scores (%) 

Used during chord progression parsing to produce likelihood 
estimates for all possible chords within a given musical segment, 

so as to determine the likeliest chord being played in the said 
segment (cf. Section 4.1.2) 

Progression 
Validator 

Chord 
progression 

Boolean 

(valid/not valid) 

Determines whether a progression between two chords verifies all 
music-theoretical rules (cf. Appendix I). Used during atomic 

evolution phase (cf. Section 4.4.3) 

MC 

Chord Identifier 
Note  

(in context key) 
Chord type         

and root 
Returns the chord type and root for a given note of a musical key. 

Used during the atomic evolution phase (cf. Section 4.4.3) 

Chord Building 
Note (serving 
as chord/key 

root) 
Chord             

Builds chords of all types, following a given root note. Used 
during the thematic evolution phase (cf. Section 4.4.3) 

Relative and 
Neighbor Key 
determination 

Key 

Relative 
major/minor key 

and neighbor 
keys 

Used to perform modulation/demodulation mutation operation in 
the mutation phase (cf. Section 4.4.4) 

Passing note  
Two 

consecutive 
chords 

Two Notes (so-
called passing) 

Identifies the highest notes in both chords that are in the same key 
and less than an octave apart. Used to perform the passing notes 

mutation operation (cf. Section 4.4.4) 

 
4.3. Music Sentiment Learner (SL) module 

The SL module houses the core functionality through which MUSEC infers (extracts) the sentiments portrayed in a 
given musical piece, and serves as the fitness function for the MC module (described in Section 4.4). It consists of 
three main sub-components: i) a non-parametric fuzzy classifier coupled with ii) a music similarity function evaluator, 
as well as iii) an extensible training set of MIDI pieces required to train the classifier. 

 

4.3.1.  Non-Parametric Fuzzy Classifier component 

It consists of a supervised learning algorithm allowing to compute sentiment scores for new incoming pieces based on 
their similarities with pieces it already learned, without making preliminary assumptions or adding constraints about 
the form of the mapping function (in contrast with parametric learners which mapping function needs to comply with 
a fixed set of parameters, cf. Section 3.2.3). We adopt the fuzzy k-NN learner (Keller J.M. et al. 1985; Shang W. et al. 
2005) in our current system due to its flexibility and effectiveness, yet any other fuzzy classifier could be used, e.g., 



(Abu Arqub O. 2017; Abu Arqub O. et al. 2016; F. Amin et al. 2017; Fahmi A. et al. 2018; Fahmi A. et al. 2019; 
Fahmi A. et al. 2017). Unlike the traditional crisp k-NN algorithm (which classifies data in crisp/distinct categories) 
(Kotsiantis S. B. 2007), fuzzy k-NN produces fuzzy sentiment membership scores (it generates so-called fuzzy 
categories with fuzzy boundaries, such that an object, i.e., a musical piece, can be part of one category and the other at 
the same time), which is more in keeping with the nature and subjectivity of sentiments (e.g., a piece of music can 
express 70% excitement, 20% anger, and 10% happiness simultaneously).  

Fuzzy k-NN follows an instance-based learning paradigm in that it does not perform explicit generalization from 
training data, but rather refers to its training data at every testing and labeling task (Keller J.M. et al. 1985). This 
makes it simple and appropriate for our music sentiment inference task, where the bulk of the work consists in 
evaluating the similarity between music feature vectors w.r.t. a reliable and expressive training set, allowing it to 
continuously adapt its fuzzy membership scores w.r.t. the number and nature of different input music pieces. The 
pseudo-code for our SL module is shown in Fig. 3. It accepts as input: i) the musical feature vectors of an initial set of 
sentiment-labeled MIDI pieces, required for training (i.e., learning phase), ii) initial fuzzy k-NN configuration factors 
(including the number and weight factor of neighbors), as well as iii) a new incoming piece’s music feature vector; 
and produces as output: a six-dimensional sentiment vector reflecting the sentiments expressed by the incoming piece. 
The sentiment vector consists of scaled and normalized scores (∈[0, 1]) associated with each of the six primary 
emotion categories considered in our study (i.e., anger, fear, joy, love, sadness, and surprise). The incoming piece’s 
feature vector is compared with those in the training set (Fig. 3, lines 1-6). Then, sentiment vector scores for the 
incoming piece are computed based on those of the k most similar training pieces identified previously (lines 7-15). 
These are subsequently normalized in order to obtain scores ∈ [0, 1] for every dimension (i.e., sentiment category) in 
the output sentiment vector (lines 16-21).  

In our current study, we set the number of nearest neighbors k to 3 and the neighbor weight factor β parameter to 
2, following general usage in k-NN classification (Keller J.M. et al. 1985; Shang W. et al. 2005). Yet, these 
parameters can be fine-tuned by the user following the nature and properties of the musical pieces utilized, in order to 
optimize sentiment scoring quality (cf. experimental results in Section 6). 

 

 

Algorithm: Sentiment Learner (SL) 
 

Input:  Training Set of musical pieces’ feature vectors: ST 
 Incoming musical piece’s Feature Vector: FVin 
 Configuration parameters: k and β 

// k: number of nearest neighbors to consider for score computation 
// β: weight factor of neighbors in fuzzy score computation 

 

Output: A 6-valued sentiment vector: SVout        
 

Begin 
 

Initialize a priority queue pQueue                          // used to sort training vectors by similarity 
For every feature vector FVTraining in ST 
{ 

Compute similarity score SimF(FVin, FVTraining)   // ∈[0, 1] 
Push FVTraining into pQueue                                // with highest priority 

}  
 

Initialize a 6-valued vector of sentiment scores to all zeros: SVout[] = (0 0 0 0 0 0)  
Initialize a 6-valued vector of normalization scores to all zeros: SVNorm[] = (0 0 0 0 0 0)       
                                                                             // SVNorm is utilized to normalize SVout  
For i = 1 to k                                                         // considering the k most similar neighbors 
{ 

Poll pQueue to retrieve 6-valued expert sentiment vector SVTraining 
Retrieve pre-computed similarity score SimF(FVin, FVTraining) for this pQueue entry 
For j = 1 to 6                                                    // Cover all six sentiments 
{ 

SVout[j] = SVout[j] + [ ]
 Training

F in Training

SV

Sim FV FV β - 1

j
1- ( , )             

 

                                   // a higher β provides more weight to nearer (more similar) neighbors  

SVNorm[j] = SVNorm[j] + 
 β - 1

1
1- ( , )F in TrainingSim FV FV

      

  }                                   // summing weight scores separately for later normalization 
} 
 

For j = 1 to 6 
    

[ ] [ ]
[ ]

out
out

Norm

SV
SV

j
 j  = 

jSV

           // Normalizing output sentiment vector scores 

 

Return SVout 
 

End 
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Fig. 3.  Pseudo-code of SL’s main algorithm 



4.3.2.  Music Similarity Evaluation component 

Music feature similarity evaluation allows the fuzzy k-NN component to perform its estimations. It accepts as input 
the music feature vectors of two MIDI files (parsed using the FP module) and returns a similarity score ∈ [0, 1] 
highlighting their similarity or divergence (0/1 designating minimum/maximum similarity respectively). Similarity 
computation is done through the aggregation of individual feature-level similarity scores into an overall similarity 
score. As for the aggregation function, various mathematical formulations can be utilized, among which the maximum, 
minimum, average and weighted sum functions. Here, we exploit the weighted sum function as it provides flexibility 
in performing similarity evaluation, adapting the process w.r.t. the user’s perception of music feature similarity. Given 
two musical pieces p1 and p2 with parsed music feature vectors FV1 and FV2 respectively, and given F the set of 7 
music features considered in our study where f ∈ F stands for every individual feature:    
 

1 2 1 2
 

 ( , ) = ( , )    [0,1]F 1 2 F f f
f F

 Sim (p , p ) = Sim FV FV w Sim FV FV
∈

× ∈
 

1 2
 

where   1,   [0,1],  and   ( , )    [0,1]f f f
f F

 w w Sim FV FV
∈

= ∀ ∈ ∀ ∈  

 

(1)

Five of the seven features used in MUSEC are scalar (including: note density, note onset density, piece tempo, 
average pitch, average intensity) and can be compared using typical Jaccard (or any other scalar vector) similarity 
evaluation measure. Yet, the remaining two (symbolic) features: dominant key and chord progression, require 
dedicated and more sophisticated similarity measures. 

Dominant keys can be compared using as reference the music-theoretical circle of fifths (Danhauser A. 1994) 
(shown in Fig. 4) highlighting the relationships between all musical keys, which we include as part of MUSEC’s KB 
module. While key comparison is performed intuitively in music-theory as the separation between keys in the circle of 
fifths, we concretize it mathematically using an adaptation of the shortest path problem. Given the graph 
representation of the circle of fifths in Fig. 4, we evaluate the similarity between two keys A and B using typical graph 
navigation techniques, namely Dijkstra’s shortest path algorithm (Cormen T.H. et al. 2009), as the inverse of the 
minimum distance path between the nodes representing the two keys being compared. To emphasize the difference 
between major and minor keys (where minor keys are more similar to each other than to major keys, and vice versa), 
we assume that edges connecting nodes representing keys of the same type (both minor, or both major) have cost =1, 
whereas edges connecting a major (minor) key node with a minor (major) key node have a higher cost =2. As a result, 
the maximum possible distance between any pair of keys = 8, which is obtained when the two keys being compared 
are one major-minor edge and 6 same-type edges apart. Consequently, the similarity between two dominant keys X 
and Y is computed as the inverse of normalized distance: 

 

( , )
 ( , ) = 1- ( , )    [0, 1]          where  ( , ) =  

8DomKey DomKey_Norm DomKey_Norm

Dijkistra X Y
 Sim X Y Dist X Y Dist X Y∈  (2) 

 

            
 

Fig. 4. Circle of fifths graph representation 
 

As for chord progressions, we compare them using the Tonal Pitch Step Distance (TPSD) approach developed in 
(W. Bas de Haas 2008) and refined in (Bas De Haas W. et al. 2008; Bas De Haas W. et al. 2013). Following TPSD, 
the chord progressions to be compared are first converted into sequences of distance values (i.e., distance series), 
consisting of the distances between every chord in one piece and the other piece’s root chord. The distance between 
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two chords is evaluated using a 5-layered approach, where the layers represent progressively more complete 
representations of the chords and their context key (e.g. Layer 1 only consists of the chord’s root, Layer 3 consists of 
all the chord’s notes, and Layer 5 includes all 12 chromas within a musical octave) producing integer distance values 
∈[0, 13], where 0 indicates total similarity and 13 complete divergence. Consequently, overall chord progression 
distance is calculated by cycling the shorter progression (evaluated in terms of duration) over the longer one, and 
computing a difference series between the two series at every cycle. The cycle yielding the smallest total difference is 
selected. Though this cycling allows comparing chord progressions in a more complete manner, it imposes a severe 
computational overhead (Bas De Haas W. et al. 2008)1. To remedy this, TPSD can be applied on the beginning of 
both progressions being compared (Bas De Haas W. et al. 2013)2, thereby performing the comparison in average 
linear time3. We adopt the latter (linear time) approach in our study, and evaluate the distance between two chord 
progressions as the average distance over the difference series, normalized by 13 (i.e., the maximum possible TPSD 
value). Consequently, similarity is evaluated as the inverse of the normalized distance. More formally, given two 
chord progressions cp1 and cp2: 
 

( , )
 ( , ) = 1- ( , )   [0, 1]      where  ( , ) =

13
1 2

ChordProg 1 2 ChordProg_Norm 1 2 ChordProg_Norm 1 2

TPSD cp cp
 Sim cp cp Dist cp cp Dist cp cp∈ (3)

4.3.3.  Training Set 
 

The training set forms the basis through which MUSEC’s SL module makes estimations, providing the “expertise” 
this module uses to infer the incoming pieces’ sentiment scores. The quality of the training set is also an essential part 
of overall system development since noisy or inaccurate training examples would produce inaccurate learning. Given 
the lack of readily available sentiment-annotated MIDI files, we have developed our own training set, which consists 
of 40 real musical pieces annotated with the help of 30 human testers via dedicated online surveys4, as well as 80 
synthetic MUSEC compositions which were rated in-house by MUSEC’s development team. The resulting 120 piece 
set1 is diverse and almost evenly distributed among all six primary emotions considered in MUSEC, with almost 20 
pieces targeting every emotion category. Details regarding the training set construction process are provided in 
Section 6.3.1. 

Considering synthetic pieces as part of our training set highlights MUSEC’s self-learning functionality, depicted 
in Fig. 5. It allows the user to easily expand the training set by feeding back to the MUSEC’s SL module some of its 
own compositions (i.e., the best and most sentiment-expressive ones, following user judgments), where every 
composition – with its associated sentiment vector – provides an added training example to the expanding training set. 
Here, combining both real and synthetic pieces to expand the training set would allow the system to gain more insight 
into new ways it can meet the given sentiment scores. For instance, a piece provided by the user to train the SL 
module could have a peculiar feature vector, which the system would otherwise have not sought to emulate in 
producing sentiment scores. Through its self-learning functionality, the system could: i) adapt to its users’ 
idiosyncrasies and inclinations (through their sentiment ratings of real/synthetic pieces) while ii) learning new ways to 
potentially produce a given sentiment target (through synthetic compositions produced by the system itself, which are 
evaluated by users, and then fed back to the system for training). 

 

 
 

Fig. 5. Simplified activity diagram describing SL’s overall process and its self-learning functionality 
 

                                                 
1 It requires O(n×m log(n+m)) where n and m designate the number of chords in the two pieces (chord progressions sequences) being processed. 
2 Consider two chord progression sequences A and B, consisting of chords A1, A2, …, Am and B1, B2, …, Bn respectively. Without loss of generality, 

consider the case where m < n. Following the standard TPSD algorithm in [6], the shorter sequence is compared with the longer one at every 
position, e.g., A1, …, Am versus B1,…,Bm, then A1, …, Am versus B2,…,Bm+1, and so forth until A1, …, Am versus Bn-m,…,Bn. Then the comparison 
yielding the smallest difference is selected as the final similarity (or distance) value. With the more efficient version of the TPSD algorithm in (Bas 
De Haas W.  et al. 2013), the chord progression sequences are only compared from their starting positions, e.g., A1, …, Am is only compared with 
B1,…,Bm, and that score is utilized as the chord progressions similarity (distance) score. Despite this linear relaxation of the original algorithm, 
TPSD computation remains the most expensive among all other feature similarity computations put together (cf. experiments in Section 6.2.2). 

3 To the expense of a potential loss of precision when processing long musical pieces (consisting of a large chord progression sequences). 
4 Available online at: http://sigappfr.acm.org/Projects/MUSEC, SL survey form #1 (first part, 24-pieces), #2 (second part, 8-pieces), and #3 (third 

part, 8-pieces), along with the resulting sentiment-labeled dataset. 
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4.4.  Music Composer (MC) module 
 

MUSEC’s MC module is the “creative” mind through which our system produces novel music. Guided by the 
system’s experience in music sentiment expression (provided by the SL module) and its understanding of music-
theory (provided by the KB module), MC utilizes evolutionary computations to: i) produce several candidate pieces 
that can possibly reflect target sentiment scores, and then ii) select the most promising candidates to further develop in 
later iterations, toward producing more sophisticated pieces which meet the user’s target sentiment scores. 
 
4.4.1. Overview 
 

MC’s overall activity diagram is depicted in Fig. 6. It adopts the Evolutionary-Developmental (or Evo-Devo) model 
approach in performing music composition: starting with “simple” individuals (representing simple MIDI musical 
chunks, made of a couple of notes each, with the notes’ properties), and evolving them into longer and more 
sophisticated ones, whilst keeping only those which seem “fittest” and most diverse, where fitness in our case 
promotes sentiment-expressive music. To evolve its population, our composer leverages music-theoretical knowledge 
from MUSEC’s KB module to produce several musical continuations for every individual (piece), thereby producing 
offspring (pieces) that extend their parents. Offspring are then exposed to a battery of 18 dedicated mutation operators 
(e.g., trille, staccato, repeat, etc.) so as to maximize population variability, diversity, and sophistication. 
Consequently, a two-step fitness-variability selection (trimming) of offspring is conducted following two criteria: i) 
fitness: selecting pieces based on their relevance w.r.t. the user’s target sentiment vector scores (evaluated through the 
SL module), and ii) variability: selecting the fittest (most sentiment-expressive) pieces that are most dissimilar from 
each other (to promote diversity in the final population). The most sentiment-expressive and varied pieces survive, 
while the others perish. Following the trimming phase, a final population is produced, and is then fed back to the 
dataset of individuals (as a new generation) after which the evolutionary process starts anew (evolution, mutation, and 
trimming). This iterative process repeats until the user is satisfied with the final compositions. 
 

Fig. 6. Simplified activity diagram describing MC’s evolutionary composition process1 
 

In addition to specifying the target sentiment scores to be portrayed in the compositions, the user can also control 
the composition process by altering several MC parameters, namely the probability of different mutation operators 
being applied, the fitness-to-variability ratio controlling the selectivity of both fitness and variability trimming, the 
size of the candidate population, the number of offspring produced per individual (referred to as the branching factor), 
and the number of generations (iterations) the evolutionary process goes through before halting. 

The following sub-sections describe MC’s main components including: individual (MIDI piece) representation, 
evolution, mutation, and trimming mechanisms.  
 

4.4.2.  Individual MIDI Piece Representation 

A MUSEC individual represents a candidate MIDI piece being developed to meet the user’s specified target sentiment 
scores. Its core components are the chords that make up the corresponding MIDI piece. Here, we view chords as genes 
in evolutionary algorithms, i.e., the most essential constituents of an individual’s representation. The genes are 
affected by most of MC’s mutation operators (cf. Section 4.4.4), such that their expression defines the melodies and 
notes that make up the individual. Fig. 7.a and Table 4 respectively provide a simple graphical representation of a 
MUSEC gene structure and a description of its various properties. 

 

                                                 
1     The population size transformation through the evolutionary process, taking into account user input parameters (namely the branching factor B and 

the fitness-to-variability ratio R), is described in detail in Section 4.4.5.  
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a. Gene (chord) representation 
 

b. Individual (MIDI piece) representation 
 

Fig. 7. Simplified graphical presentations of a MUSEC MC gene (a) and individual (b) 
 

Table 4.  Properties of a MUSEC gene (chord) representation 
 

Property Meaning Description 

Length in beats 
The number of beats the chord 

occupies 
This value can change as a result of various mutations (e.g., extend, steal, 

compress, cf. Section 4.4.4). 

Frontier Array It consists of 3-to-41 MIDI 
pitches from the chord’s notes 

The frontier is used to compute valid musical chord continuations to the current 
chord during MC’s evolution phase (cf. Section 4.4.3), following the rules of 

music theory (coded in the KB module). Note that a chord’s frontier is static and 
is not affected by MC’s mutation operations. 

Note Array 
A dynamic-size array 

containing all notes to be 
played as part of the chord 

Unlike the static frontier, notes in this array are dynamic: affected by MC’s 
mutation operators which produce variations in performing the same chord, 

modifying the notes’ ordering, timing, and length within the chord. Additional 
notes can also be added, and existing ones can be removed from the chord. 

Chord Type 
The chord type (major, minor, 

dominant seventh, etc.) 
The root and chord type which identify the chord. 

Velocity 
The velocity (intensity) at 

which the chord’s notes are 
played 

Velocity is equal to the individual’s intensity at the time of the chord’s insertion. 

Key The chord’s key It also represents the individual’s key at the time of the chord’s insertion 

 
Consequently, we define the MUSEC individual as a dynamic and extensible composition of genes. It is 

constructed based on several musical properties some of which change and grow as the individual evolves, allowing to 
produce an increasingly larger and more sophisticated musical piece while ensuring that musical conventions and 
rules are respected in the composition process. Fig. 7.b and Table 5 respectively provide a simple graphical 
representation of a MUSEC individual structure and its various properties. 

 
Table 5.  Properties of a MUSEC individual (MIDI piece) representation 

Property Meaning Description 

Main Key  
The main key that the 
composition follows 

The individual starts in this main key but can leave it due to a modulation (one of 
MUSEC’s mutation operators), and can later return to it following another modulation. 

Current Key  
The key that the 

composition is currently 
using 

When the individual modulates to another key, the main key will continue to indicate the 
original key, while the current key will reflect the new key. This property is mainly used 

to compute the continuation to a given piece, following the key it is currently using. 

Starting 
Intensity 

The starting MIDI velocity 
used in the individual 

Through mutations, a piece’s velocity can vary over time (i.e., getting louder or calmer). 

Current 
Intensity 

The current MIDI velocity 
used in the individual 

It allows tracking the MIDI velocity applied at the current point in the individual. 

Tempo 
The overall speed and 

rhythm of the piece 
Expressed in BPM, this value can change over time due to mutations that affect the 

individual. 

Time 
Signature 

The rhythmic structure of a 
piece expressed in terms of 

time signature 

It commonly varies between binary (2/4), ternary (3/4), and quaternary (4/4), among other 
signatures2. 

Chord 
Progression 

List 

The list of chord 
progressions in the musical 

piece 

The complete sequence of chords (and their musical realizations) that make up a musical 
piece 

 

                                                 
1   Following music theory (Danhauser A. 1994), a chord can be defined as having 3, 4 or more musical pitches in its fundamental definition, referred 

referred to as fifth, seventh, or ninth chords. Yet we only handle 3-to-4 pitch chords in our gene representation since larger chords can be 
represented using simpler fifth or seventh chords. This allows to avoid musical dissonance in composition, which could occur when larger chords 
are considered. 

2    We adopt 4/4 as the default time signature in our current system implementation. 

Key Chord Type Velocity Length in Beats Frontier

Note 1 Note 2 Note 3 

Note List 

Gene (chord) representation 
Individual (MIDI piece) representation 

Main/Initial Key Initial Intensity Tempo 

Time SignatureCurrent Intensity Current Key 

Chord 1 Chord 2 Chord 3

Chord Progression List 



As a result of this flexible structure at both the gene and individual levels, the pieces generated by MUSEC’s MC 
module can take a wide range of varying and sophisticated forms, allowing for a varied expression of the user’s input 
sentiments. 
4.4.3.  Population Initialization and Evolution 

 

When the MC module is called upon to compose a musical piece (in order to express the user’s target sentiment vector 
scores), it first starts by creating an initial (seed) population, consisting of a number of random initial individuals with 
random properties, so as to have as varied a population as possible (in terms of key, tempo, and starting intensities). 
During the population initialization phase, a single gene (chord) is introduced to every individual’s chord progression 
list, consisting of the root chord of the individual’s key, added in its most basic form (i.e., in its root position, 1 beat 
long, with all its notes played simultaneously). As a result, the initialization phase produces a number of relatively 
short (1-beat), basic (root chords), but extremely heterogeneous musical individuals, ready to evolve into more 
sophisticated ones. Note that the size of the seed population can be chosen by the user (we initially set it to 50 
individuals, which produced satisfying results in our experiments, cf. Section 6.4). 

Once a population of individuals has been initialized, it goes through the evolution phase, in which every 
individual in the population grows more sophisticated by virtue of one or more added genes (chords). In this phase, 
we consider two evolution modes: atomic evolution, and thematic evolution. 

 

 

Fig. 8. Simplified diagram describing MC’s evolution phase 
 
1. Atomic Evolution consists of adding a single gene, i.e., a single chord, to the individual. It selects the chord to 

be added based on music-theoretical grounds, following MUSEC’s KB rules. More in particular, using the individual’s 
current key, the atomic evolution process identifies the key’s main seven chords (one per key note) and randomly 
selects one chord to realize based on a pre-defined chord probability distribution1. Then, a recursive function titled 
Chord_Realizations (cf. Appendix I) identifies all possible music-theoretic valid realizations of the selected chord, in 
terms of inversions and notes, using the individual’s last chord’s frontier from which a realization is randomly 
selected. The identified chord is packaged as a MUSEC gene structure to be inserted into the candidate individual. 
The newly inserted gene is then subjected to various mutations during the evolutionary composer’s mutation phase 
(described in the following section), before obtaining the final version of the candidate individual. 

While atomic evolution allows to produce new melodies, by creating new chord patterns and completing existing 
ones, nonetheless, it is an unstructured and pseudo-random2 evolutionary approach, which, applied alone, produces 
unstructured and somewhat chaotic compositions. To avoid the latter and produce more structured music, inspired by 
how chord patterns occur and repeat in human compositions, we extend the atomic evolution process to produce chord 
patterns and pattern repetitions in the composition process. We refer to the latter as thematic evolution.  

 

2. Thematic evolution repeats a given individual (MIDI piece)’s gene (chord) pattern so as to emulate human 
composers’ concept of a melodic theme, which is extremely powerful and widely adopted in music composition 
(Danhauser A. 1994). A melodic theme is defined as the melodic subject of a musical composition, usually 
announced in the first measures of the piece.  However, identifying the melodic theme in order to repeat it is not a 
simple task, given the diverse forms in which a theme can manifest itself in music. To remedy this, we adopt a 

                                                 
1

 In our current implementation of MC, we hard-coded the chord probability distribution (through which a chord is selected) based on 
empirical sampling from our training set. Yet, learning the chord probability distribution can be a research project in and of itself, and can 
entail different composition styles. For instance, the distribution could be learned from a composer’s composition corpus, to produce pieces 
following the composer’s own style (which we further discuss as an ongoing work in Section 8). 

2  Randomness is guided by MUSEC’s KB music-theoretic rules. 
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simplifying heuristic, through which a melodic theme is defined as being the first chord progression starting and 
ending with an individual’s root chord. Though simple, this assumption holds for a large number of compositions, and 
has produced satisfactory results in our experimental evaluation (cf. Section 6.4). The melodic theme’s chords are 
added to the end of the piece, where mutations are applied to the repeated melodic theme’s chords such that each 
repetition becomes a variation of its original version, much like how human composers vary their choruses slightly 
between different repetitions, allowing to avoid a redundant repetition of themes. 

 

A functional diagram depicting MC’s evolution mechanism is shown in Fig. 8. The decision to perform atomic 
evolution or thematic evolution is made following a scan of the individual’s chord progression. If no melodic themes 
are found (i.e., if there is no first chord progression starting and ending with an individual’s root chord), then atomic 
evolution is performed (in hope of producing a new melodic theme). Otherwise, if a melodic theme exists already, 
then a random (Poisson) decision is made to run either thematic evolution or atomic evolution. The evolution process 
is repeated B times, where B denotes MC’s branching factor, such that every individual in the current population 
produces B offspring. The value of B can be chosen and fine-tuned by the user (we initially set B=5, which is a rather 
common choice in evolutionary computation literature, e.g., (Marques M. et al. 2000; Whitley D. et al. 2012)). 

Given a branching factor B and an individual population size S, the evolution phase produces SEvo= B×S 
individuals to form the new generation. 

 

4.4.4.  Mutation Phase 
In order to compose diverse and sophisticated music, MC relies on several music-theoretical mutation operations. 
These mutations affect the realization of genes (chords), be it in terms of the order of note onsets, the decorations 
applied to these realizations, or the intensity and duration of the chord being played, among other features. Beyond 
gene realizations, we also introduce mutations that can affect the entire individual (MIDI piece), in particular its 
dynamic features such as: tempo, current intensity, and key (via modulations and demodulations).  

A diagram depicting the mutation process, as part of MC’s overall evolutionary process, is shown in Fig. 9. A 
mutation operator opi is performed by evaluating its frequency of occurrence Freq(opi) (i.e., the number of times it 
appears, over the total number of mutations) in the individual being composed. Occurrence frequencies are compared 
with a vector of mutability thresholds where every threshold 

iOpThresh value is associated with a given mutation 

operator, such that the mutation is randomly chosen and applied to the individual until reaching the designated 
threshold. Mutation occurrence frequencies are updated at the end of every mutation phase, considering the new 
mutation that took place on the new added gene (or on the entire individual). When the mutation operator’s 
occurrence frequency in the individual being composed has reached its maximum threshold, it will not be considered 
among potential mutations in the subsequent mutation phase. In our current study, we allow users to manually set the 
mutability thresholds’ vector, allowing them to control (or promote) variety in the produced offspring. In addition, 
mutability thresholds can be altered or fine-tuned to define or distinguish between different composition styles (which 
we further discuss among future research directions in Section 8).  

 

 
 

Fig. 9. Simplified diagram depicting MC’s mutation process 
 
MC currently offers 18 different mutation operators, which we briefly describe below in Table 6 (a more detailed 

description of every operator is provided in Appendix II). Additional operators can be added later to allow even more 
variability and sophistication in the produced compositions. 

 

4.4.5. Trimming Phase 
 

Following MC’s evolution and mutation phases comes the trimming phase, which selects the offspring that it deems 
“fittest” and “most varied” to survive into the new generation (cf. evolutionary mechanism depicted in Fig. 6). Among 
the SEvo=B×S individuals produced by the evolution phase (where B is the branching factor, and S is the population 
size), the trimming phase selects the S fittest individuals from SEvo to survive into the next cycle, effectively “killing” 
(B-1)×S individuals. At the end of this phase, the evolutionary composer will have the exact same population size that 
it had at the beginning of its evolutionary cycle. 

To perform the trimming of (B-1)×S individuals, we make use of two criteria evaluated consecutively in a two-
step trimming process: i) fitness, which measures the individual (MIDI piece)’s relevance w.r.t. the user-specified 
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target sentiment vector, and ii) variability, which assesses an individual’s variation (distinctiveness) from to its peers. 
Fitness trimming is performed as the first trimming step (since it highlights MUSEC’s primary objective: expressing 
sentiments in music), followed by variability trimming as a subsequent phase (promoting diversity in the population).  

Table 6. Brief description of MUSEC MC’s mutation operators 
 

Target # Operator Description 

Single chord 
(gene) 

 

1 Trille 
It retrieves the next note above the highest note in the chord (gene), and then alternates rapidly 

between the two notes over the first half-beat of the chord being mutated. 

2 Staccato 
It alters all the chord’s notes, by reducing the duration of every note to an eighth beat, so as to 

have them played detached and separated from each other. 

3 Repeat 
It divides the current chord duration into two (based on a random decision), and then repeats the 
notes being played as part of the original chord a second time: adding a copy of all notes in both 

divisions. 

4 Compress 
It shrinks the chord’s overall duration to a certain (randomly chosen) percentage of its original 

duration, thus raising overall piece note and note onset density. 

5 Extend 
It extends the duration of a chord to a certain (randomly chosen) percentage of its original 
duration, thus lowering piece and note onset densities. It can be viewed as the symmetric 

counterpart of compress. 

6 Silence 
It extends the duration of a chord to a certain (randomly chosen) percentage of its original 

duration. Yet, unlike from the extend operator, it does not extend the notes themselves, but rather 
preserves their original durations and instead creates a silence at the extended part of the chord. 

7 
Silence 

Suspension 

It identifies the note realizations of a chord’s frontier notes (its root, third, and fifth), and then 
randomly chooses one of them and delays its entry by a quarter-beat, thus increasing note onset 

density. 

8 
Progressive 
Entrance 

It makes a chord’s frontier notes enter (be played) progressively (in sequence), by randomly 
choosing a starting distribution and spreading over a half-beat duration, which indicates the beat 

timing at which every frontier note should be played. 

9 
Nota 

Cambiata 

It decorates the highest note of a chord by preceding it with three other notes in its key: i) a third 
above, ii) a second above, and iii) a second below it in its chord’s key, assigning a random 

duration to each of these notes following the same logic adopted by the progressive entrance 
operator. The decorated note is delayed by half a beat to accommodate the new decoration.

10 
Appoggiatur

a 

It decorates the highest note of a chord by preceding it with an adjacent note in its key: typically 
the note a second above or a second below it in the given key. Similarly to the Nota Cambiata 

operator, the decorated note is delayed by half a beat to accommodate the new decoration. 

11 
Double 

Appoggiatur
a 

It is a more sophisticated version of the appoggiatura mutation, where the decorated note is 
preceded with both its adjacent notes, in a randomly chosen order (i.e. which note is played first), 

and a duration distribution (using eighth beat time units) for the two added notes over the half-
beat they are allocated to fit the decoration. 

12 Octava 

It shifts the pitches of the chord’s notes up or down by an octave (i.e. adds/subtracts 12 to the 
said notes’ MIDI pitches). The choice of octave jump (up or down) is stochastically governed by 
the current average pitch of the chord, such that chords with a lower average pitch are likelier to 

be shifted up by an octave, and vice versa. 

Two 
consecutive 

chords 
(adjacent 

genes) 
 

13 Tempo Steal 

Unlike the previous operators, tempo steal affects two chords, rather than just one. It selects two 
adjacent (consecutive) chords such that one “steals” a certain duration in beats from the other. 

The stolen duration value is a certain random percentage of the duration of the chord to be stolen 
from. 

14 
Passing 

notes 

Also applied on two consecutive chords, it checks the highest notes in both chords to verify 
whether they are in the same key and less than an octave apart. If so, the notes are added in 
sequence to the end of the first chord, considering a duration distribution allocating duration 

chunks following: total duration divided by the number of passing notes. 

15 Anticipation 
Also applied on two consecutive chords, it identifies the highest note of the second chord and 
inserts it in the final half-beat of the first chord, thus emulating the music-theoretic concept of 

anticipation, and increasing both note density and note onset density. 

Whole piece 
(individual) 

16 
Tempo 
change 

It affects the whole individual (MIDI piece) by changing its overall tempo: in increments or 
decrements of 4 BPM (Beats Per Minute). The increase/decrease decision is made stochastically 

following the piece’s current tempo, such that pieces that are slower are likelier to speed-up 
following this mutation and vice-versa. 

17 
Intensity 
change 

It changes the individual (MIDI piece)’s current intensity value (velocity) in steps of 20 (in the 0-
to-127 MIDI intensity range), such that the increase/decrease decision is made stochastically 

following the piece’s current intensity, where pieces that are of lower intensities are likelier to 
become louder following this mutation, and vice-versa. 

18 Modulation 

It changes the individual (MIDI piece)’s current key to one of its neighbor keys (i.e. keys with 
which it shares connected edges) in the circle of fifths (cf. Section 4.3.2). It checks the last chord 

in the piece and identifies potential destination keys. If more than one alternative is possible 
(following the circle of fifths), then the operator randomly selects the destination key. The piece’s 

current key is then changed to the new key. 
 
To do so, we introduce a fitness-to-variability ratio, noted R, that specifies how much of the overall trimming of 

(B-1)×S individuals is performed in each step: 
 

=  
+

F
R

F V  
where F and V designate the numbers of individuals trimmed based on fitness and variability (4) 



respectively, such that F+V represents the total number of trimmed individuals.
 

 
 

A ratio of R=1 indicates that trimming is completely based on fitness, while a ratio of R=0 indicates that it is 
solely based on variability. More specifically, for a given fitness-to-variability ratio R, the fitness criterion trims

( )( )1  F R B S= × − × individuals, hence shrinking the population size from =  EvoS B S× to 

( )( )= ( 1)FitS B R B S− × − ×  individuals. Consequently, the variability criterion trims ( )( )(1 ) 1  V R B S= − × − × to 

bring the population size down to S. The value of ratio R is chosen by the user (we adopt an initial value of 0.7, i.e., 
70% of individuals are trimmed based on fitness, and 30% are trimmed based on variability1). The change of 
population size due to the trimming mechanism is represented in MC’s activity diagram in Fig. 6. 

 
 

Algorithm: Fitness Trimming 
 

Input:  Set of individuals: I                                // a total of SEvo= B×S individuals generated in the evolution phase  
User target sentiment vector: SVuser  
 

Output: List of survivors: ListFit                         // of cardinality SFit=(B ‒ (R×(B ‒ 1)))×S ordered by fitness 
 

Begin 
 

Initialize an ordered list ListFit = ∅                   // used to sort individuals by fitness 
Initialize a priority queue pQueue                           
 

For every individual i in I        
Run through MUSEC-ML to obtain sentiment vector SVi 

Compute SimPCC(SVi, SVuser) 
Push i into pQueue following SimPCC as priority level 

 

Repeat 
 

Pull individual i from pQueue 
Add i to ListFit 

 

Until reaching |ListFit| = SFit                               // number of required fitness trimming survivors   
 

Return ListFit 
 

End 

 
 
 
 
 
 
 
 
 

1 
2 
 
3 
4 
5 
6 
 
7 
 

8 
9 
 

10 
 
11 
 

 

a. Pseudo-code of fitness trimming process. 
 

 

Algorithm: Variability Trimming 
 

Input: List of individuals: ListFit            // consisting of SFit=(B ‒ (R×(B ‒ 1)))×S  survivors of fitness trimming 
                                                                          // ordered following their fitness (from most to least fit)   

Output: List of survivors: ListOut           // of cardinality =S, ordered following both fitness and variability  
 

Begin 
 

Initialize an ordered list ListOut = ∅           // used to sort individuals by dissimilarity 
 

Select fittest individual i from ListFit          // one that is ordered first in I 
Add i into ListOut as first survivor, and remove it from ListFit 
 

Repeat 
 

For every individual j in ListFit        
Compute average feature similarity between j and all survivors in ListOut 

 

Select individual k with lowest average feature similarity and highest fitness  
Add k into S as next survivor, and remove it from ListFit 

 

Until reaching |ListOut| = S                       // required number of survivors 
 

Return ListOut 
 

End 
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b. Pseudo-code of variability trimming process. 
 

Fig. 10. Pseudo-codes of MC’s two-step trimming process: fitness (a) and variability (b) 
 
The pseudo algorithms of our fitness trimming and variability trimming processes are shown in Fig. 10. On one 

hand, the fitness trimming process (cf. Fig. 10.a) accepts as input the set of SEvo individuals produced by the evolution 
phase, as well as the target user sentiment vector. It then evaluates the fitness of every individual using MUSEC’s ML 
module (lines 1-4), which accepts as input the candidate individual (MIDI piece) and produces as output the sentiment 
vector expressed by the individual. The produced sentiment vector is then compared with the user’s target sentiment 
vector (using PCC2 vector similarity) in order to quantify their closeness (lines 5-6). Individuals which sentiment 

                                                 
1   Emphasizing sentiment expression, while also promoting diversity.  
2   Pearson Correlation Coefficient. Note that any other vector similarity measure (such as cosine or dice) could have been used. We adopt PCC here 

since it is commonly utilized in the literature (Abbasi A. et al. 2008; O’Connor B. et al. 2010). 



vectors are most similar to the user’s target vector are chosen as candidates for survival to the next cycle. These 
amount to ( )( )( 1)  FitS B R B S= − × − × survivors, filtered from the SEvo=B×S population through a sentiment 

similarity-based priority queue (lines 7-11), to be then fed as input to the subsequent variability trimming step. 
On the other hand, the variability trimming process (cf. Fig. 10.b) accepts as input the list of SFit candidates 

identified in the fitness trimming phase, and filters out the least varied individuals among them. It allows identifying 
musically different (divergent) pieces, by comparing the candidate individuals’ music feature vectors in order to select 
the most dissimilar ones, thus encouraging novelty and variation in the composition process. To do so, it first selects 
the fittest individual from the survivors of the fitness trimming phase (lines 1-2), and then compares it with the other 
survivors (line 3-6) in order to select the one with which it shares the minimum music feature vector similarity (line 7, 
cf. feature similarity evaluation in Section 6.2). The process is repeated iteratively, comparing each of the fittest 
remaining candidates with the already selected individuals, in order to select the (fittest) candidate that is most 
dissimilar (i.e., having the minimum average feature similarity) from the selected ones, until reaching the required 
number of candidates S (lines 8-10). Remaining survivors are discarded. (Abbasi A. et al. 2008; O’Connor B. et al. 
2010)Finally, the user can choose to consider the whole population of S fittest and most varied individuals as the 
result of the composition process, in which case the system would be producing as output: S different pieces after 
every run. Nonetheless, in our case, we consider one single piece as the output of every run: corresponding to the 
single most fit (i.e., most sentiment expressive piece) among the S produced individuals1.  

5. Complexity Analysis 

The overall time complexity of our approach simplifies to ( )( )( )2× × ×O N B S T N S× +
 
where N represents the number 

of generations (number of iterations of the evolutionary process), B the branching factor (number of offspring per 
generation), S the population size (number of pieces maintained at the end of every evolutionary iteration), and T the 
size of the training set (used by the learner to infer sentiment scores). It is evaluated as the sum of the complexities of 
the main modules of the MUSEC framework, which mainly amounts to the complexity of the MC module (since it 
invokes the other modules within its execution process): 
 

− Feature Parsing (FP): simplifies to O(n + b) time where n represents the number of notes, and b the number of 
beats in a MIDI piece, and can be evaluated as the sum of the complexities of parsing all (symbolic and 
frequency domain) features from the input music (MIDI) piece. Initially, the FP module identifies all notes n 
from the piece by iterating through the piece’s MIDI messages and identifying Note On/Note Off message pairs. 
This operation is linear w.r.t. the size of the input piece, i.e., O(|p|) which comes down to O(n) time. Tempo 
parsing is performed through reading the MIDI piece’s tempo meta message (cf. Section 4.1), and is performed 
in parallel with note parsing while the MIDI piece’s messages are being read. The same goes for parsing note 
density, note onset density, average pitch, average intensity, and dominant key features which are computed in 
parallel with note parsing, performing weighted average computations on the input piece’s note properties (such 
as duration and pitch). However, the chord progression feature parsing does not depend on the number of notes, 
but rather on the number of beats, b, in the input piece, due to the beat-based nature of the chord parsing 
heuristic (cf. Section 4.1.2), and thus requires O(b) time. Hence, FP’s complexity comes down to O(n + b) time. 

 

− Sentiment Learning (SL): the complexity of the fuzzy k-NN algorithm, which is the main building block of our 
SL module, simplifies to O(|cp|×T) time, where |cp| designates the length of the smallest chord progression 
within two pieces being compared, and T the size (in number of pieces) of the training set. In fact, the algorithm 
is non-parametric and instance-based, and thus does not require any training time. Training the SL component 
consists in adding an element (a new piece) to its training set, which is done in constant O(1) time. The 
algorithm’s execution (fuzzy scoring) requires O(|cp|×T×k) time where k is the number of k-NN neighbors 
considered when producing the fuzzy sentiment scores: 

 

− Each similarity evaluation computation between two music (MIDI) pieces requires O(|cp|) since: 
− Computing the similarity between all features, except for chord progression, requires constant 

(near-zero) O(1) time, since they consist in comparing constant size scalar vectors (e.g., comparing 
tempo values, note density values, note onset density values) while key comparison is also done in 
O(1) by identifying the shortest path within the circle of fifths (cf. Section 4.3.2) which is of 
constant size. 

− As for chord progression similarity, it is evaluated using the TPSD algorithm (cf. Section 4.3.2), 
which runs in average linear time w.r.t. the smallest length between the two chord progressions (of 
the two music pieces) being compared, i.e., O(|cp|) time. 
 

                                                 
1  We consider this strategy to be similar to the way some human composers usually write music: producing multiple candidate (trial) pieces, slicing 

and mixing them up, developing them and making them evolve until reaching a final pool of best candidates, from which the single best candidate 
is usually adopted as the actual final piece.  



− The algorithm compares the input target piece’s feature vector with the vectors of every one of the T 
pieces in the training set, while selecting the top k pieces with the highest similarity scores to compute 
the target piece’s fuzzy sentiment scores accordingly, requiring O(|cp|×T×k) time.   

 

Given a fixed k parameter, the algorithm’s complexity simplifies to O(|cp|×T), which in turn comes down to 
O(N×T) since chord progression size grows by 1 chord every generation (i.e., |cp| linearly follows N). 

 

− Music Composition (MC): simplifies to ( )( )( )2× × ×O N B S T N S× +
 

where N represents the number of 

generations, B the branching factor, S the population size, and T the size of the training set: 
 

− The population initialization phase requires O(S), where S individuals are randomly initialized. 
− The evolution phase requires O(S×N) time: i) atomic evolution requires constant O(1) time, whereas ii) 

thematic evolution requires O(S×N) time since it iterates over every individual among S, and executes 
once for every added gene, where the length of an individual grows by 1 gene (chord) per generation. 

− The mutation phase requires O(|op|× S), where |op| designates the number of mutation operators in KB, 
while applying every individual operator requires constant O(1) time. Since the number of operators |op| 
is fixed in KB, complexity simplifies to O(S). 

− The trimming phase simplifies to ( )( )( )2× × ×O N B S T N S× +  time:  

− The fitness trimming phase requires O(B×S×T×N), where B×S individuals (offspring) are evaluated 
by the SL module to predict their estimated sentiment vector, requiring O((B×S)×(N×T)) time.  

− The variability trimming phase requires ( )( )( )2 2= ( 1)  FitS B R B S− × − × where R is the fitness-to-

variability ratio, and practically simplifies to O(S2) since R is supposed to be high (by design, cf. 
Section 4.4.5) such that most offspring are trimmed during the fitness trimming phase1.  

 

The fitness phase, including both fitness and variability trimming executed consecutively, is repeated for 

every generation, leading to an overall ( )( )( )2× × ×O N B S T N S× +
 
time. 

6. Experimental Evaluation 
Following the implementation of our MUSEC framework2, we conducted a large battery of tests to assess the 
performance of its different modules and components. Experiments were carried out on a Toshiba Qosmio X70-A, 
Intel® Core i7 – 4700 MQ processor with 2.40 GHz clock rate and 32 GB of RAM. A total of 250 music pieces were 
utilized in the experimental evaluation, including: 100 pieces for feature parsing and similarity evaluation, 120 for 
sentiment learning (i.e., the training set), and 30 pieces for music composition evaluation. Pieces were assigned to 
every evaluation task following the different properties that need to be evaluated (e.g., pieces with different lengths in 
number of notes and number of beats were used to evaluate MUSEC’s FP module, whereas sentiment-expressive and 
sentiment-diverse pieces were utilized to train and evaluation the SL and MC modules). The experimental dataset and 
test results are available online2. 

  
6.1. Feature Parsing Evaluation 
 

MUSEC’s feature parsing (FP) module produces seven (symbolic and frequency domain) features, building a 
representative feature vector for every input music (MIDI) piece (cf. Section 4.1) to be later processed for sentiment 
analysis. We considered a sample of 100 music pieces (50 real pieces, and 50 synthetic pieces composed by MUSEC) 
to evaluate FE’s effectiveness and efficiency. All seven features were extracted from every piece and evaluated by 
three music experts. 
 
6.1.1. Feature Parsing Effectiveness 

 

In terms of effectiveness, results show that five of FP’s seven features were parsed correctly all the time for all test 
pieces, highlighting the deterministic nature of their extraction processes (cf. Section 4.1.1), whereas dominant key 
and chord progression feature parsing did not guarantee 100% correctness. Test results showed that dominant keys 
were identified with 93% accuracy (i.e., they were correctly identified in 93 of the 100 of the test pieces), particularly 
when considering non-modulating music, while chord progressions were correctly parsed with 85% accuracy, 
particularly when considering well-structured music.  

By taking a closer look at the pieces where the latter two features were not parsed correctly, we realized that their 
parsing heuristics did not perform well for atonal music, or for particularly unstructured or non-rhythmic pieces. Yet 
knowing that dominant key and chord progression parsing remain open problems in the literature (Demopoulos R.J. et 

                                                 
1  We adopted a ratio R = 0.7 in our current study, so that 70% of the offspring would be subject to fitness trimming, whereas only 30% 

would undergo variability trimming.  
2  Available online at: http://sigappfr.acm.org/Projects/MUSEC 



al. 2007; Kyogu L. 2008; Zenz V. 2007) (cf. Section 4.1) we consider that our present heuristics perform well enough 
even in these situations (since providing improved feature parsing techniques is outside of the scope of this study).  

 
 

 
 

 

Fig. 11. Feature parsing accuracy, considering FP’s seven (symbolic and frequency-based) features 
 

6.1.2. Feature Parsing Efficiency 
 

Results in Fig. 12 highlight: i) aggregated feature parsing time for all MUSEC features (excluding chord progression) 
which varies with the MIDI piece size (Fig. 12.a), while ii) chord progression parsing occurs after all the other 
features have been extracted, and its time varies with the number of beats in a piece (plotted in Fig. 12.b). 
 

  

a. Aggregate feature parsing time (excluding chord progression) 
w.r.t. MIDI file size and the number of notes in a piece1 

 

 c. Chord progression parsing time w.r.t. the number of beats in 
a MIDI piece 

 

 

Fig. 12. Feature extraction time 
 

Results highlight FP’s linear complexity in terms of music piece size |p| (which is linear w.r.t. the number of 
notes n) and the number of beats b in a piece, i.e., O(|p| + b), simplifying to O(n + b). The chord progression parsing 
process is clearly more expensive than its counterparts, due to the inherent (music-theoretic) complexity of detecting 
and identifying chord progressions (cf. Section 4.1.2), which time is linearly dependent on the number of beats in the 
music piece2 (cf. Fig. 12.b).  
 

6.2. Similarity Computation Evaluation 
Assessing the quality of similarity computation in comparing two musical pieces is not a straightforward task. 
Oftentimes, music comparison has no unique correct answer, and usually depends on the listener’s judgment. To 
handle the “subjectivity” of assessing music similarity, we confine our comparison approach to the seven music 
features considered in MUSEC, and therefore restrict the scope of our tests to the direct application of our aggregate 
similarity evaluation function (cf. Formula 1). In this experiment, we considered 30 pairs of musical pieces, randomly 
sampled from the subset of 50 real pieces considered for feature parsing evaluation. Every pair was processed for 
similarity evaluation using several (weighted) combinations of our individual feature-level similarity functions, in 
order to find the most suitable and best performing feature similarity combination. The 30 pairs were rated by three 
music experts, producing an integer value between 0 (for minimum similarity) and 10 (for maximum similarity). 
Average expert ratings were utilized as a benchmark for this experiment.    
 
 

                                                 
1 The number of notes in a MIDI piece is roughly 1/10th the size of the corresponding file. 
2  Note that the number of beats in a piece is naturally less than the number of notes. While there is no straightforward relationship between the two, 

they can be paralleled to sentences and words in flat text: where beats represent music sentences, and notes represent the sentences’ words. In our 
sample test dataset of 100 pieces, the number of beats was on average 4-to-8 times less than the number of notes.   
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6.2.1.  Similarity Computation Effectiveness   
 

To select a good weighted combination of feature-level similarity functions, and given the infinite number of possible 
combinations, we limited our testing to the following seven functions which we deemed most interesting to test. 
Given two music pieces p1 and p2, where FV1 and FV2 represent their feature vectors: 
 

- Tempo_Only Similarity: Evaluated solely based on the two pieces’ tempo similarity, where the weight of the 
tempo feature is assigned maximum value: wTempo=1, and all other features are assigned zero weights, i.e., 
Sim(p1, p2) = SimTempo(FV1, FV2) ∈ [0, 1] 
 

- Chord_Only Similarity: Evaluated solely based on the two pieces’ chord progression similarity, where the 
weight of the chord progression feature is assigned maximum value: wChordProg=1, and all other features are 
assigned zero weights i.e., Sim(p1, p2) = SimChordProg(FV1, FV2) ∈ [0, 1] 
 

- Key_Tempo Similarity: Considering the average of dominant key and tempo similarities, where the latter 
features’ weights are assigned equal values: wDomKey = wChordProg = 0.5, and all other features are assigned zero 
weights, i.e., Sim(p1, p2) = 0.5×SimDomKey(FV1, FV2) + 0.5×SimTempo(FV1, FV2) ∈ [0, 1] 
 

- Key_Chord Similarity : Considering the average of dominant key and chord progression similarities, and all 
other features are assigned zero weights, i.e., Sim(p1, p2) = 0.5×SimDomKey(FV1, FV2) + 0.5×SimChordProg(FV1, 
FV2) ∈ [0, 1] 
 

- High_Level Similarity: Assigning higher weights to high-level (symbolic) music features, namely dominant 
key and chord progression: each assigned a normalized weight of wDomKey = wChordProg = 2/7, and tempo 
assigned wTempo = 1/7, while all other features are assigned equal weights of 1/14 each. Weight values were 

identified empirically after multiple experimental runs, i.e., Sim(p1, p2) = 2/7 × SimDomKey(FV1, FV2) + 

( ) ( )1 2 1 2 1 2
 

2/7 ,    1/7 ,   1/14 ( , ) [0,1]ChordProg Tempo f
f remaining

Sim FV FV Sim FV FV Sim FV FV
∈

× + × + × ∈  

 

- All_But_Chord Similarity: Considering the average of all feature similarities excluding chord progression, 
i.e., 

1 2
 

1/6 ( , ) [0,1]f
f ChordProg

Sim FV FV
≠

× ∈  

 

- Uniform_Average Similarity: Considering the average of all feature similarities, i.e.,

1 21/7 ( , ) [0,1]f
f

Sim FV FV× ∈  

 

Similarity scores for all seven test functions applied on all 30 pairs of pieces were computed and compared with 
the experts’ average ratings, using Pearson Correlation Coefficient (PCC) and Mean Square Error (MSE). PCC is a 
correlation measure and evaluates the dependence between vector shapes (∈[-1, 1], i.e., 1 for maximum correlation, 0 
for no correlation, and -1 for negative correlation1), whereas MSE is a distance measure evaluating the separation 
between vectors (as their average Euclidian distance ∈[0, ∞[). A high quality similarity evaluation function would 
naturally produce: i) high PCC scores: which means that the system generated similarity values are closely correlated 
with the user (expert) ratings; ii) and low MSE scores: meaning that the system generated similarity values are not 
distant from the expert ratings. Results in Table 7 show that tempo seems like a relevant feature for computing 
similarity between two musical pieces, producing high correlation (PCC=0.5604) w.r.t. human similarity ratings, 
compared with other feature combinations. This falls in line with humans’ subconscious way of comparing pieces, 
where fast versus slow pieces are often viewed as (more or less) dissimilar. However, tempo used alone produced a 
high error distance score (MSE=0.1126), which means that pairs considered individually (one by one) were evaluated 
differently w.r.t. human ratings2. Surprisingly, chord progression, used on its own, produced relatively low correlation 
(PCC=0.2254) and high error distance (MSE=0.1021) w.r.t. human ratings, and thus does not seem like a descriptive 
feature in evaluating music similarity (despite its sophistication and the complexity of its parsing). The highest 
correlation results obtained with relatively low error distances were produced by combining more than one feature, 
namely using the Uniform_Average aggregate test function (PCC=0.6677), followed by All_But_Chord  
(PCC=0.6447). These results highlight the importance of aggregating multiple features in evaluating music similarity.  

As a result, we adopt the Uniform_Average test function as the default aggregate similarity function in the 
remainder of our experimental evaluation. 

 
 

                                                 
1 PCC = δXY/(δX ×δY) where: x and y designate user and system generated similarity values respectively, δX  and δY denote the standard deviations 

of x and y respectively, and δXY denotes the covariance between the x and y variables. The values of PCC ∈ [-1, 1] such that: -1 designates that one 
of the variables is a decreasing function of the other variable (i.e., music pieces deemed similar by human testers are deemed dissimilar by the 
system, and vice versa), 1 designates that one of the variables is an increasing function of the other variable (i.e., pieces are deemed 
similar/dissimilar by human testers and the system alike), and 0 means that the variables are not correlated. 

2 MSE, computed as an average Euclidian distance measure, is a good indication of how close similarity scores are to human ratings: one by one (for 
every pair of pieces), whereas PCC compares the behavior of the vector of similarity ratings (for all pairs or pieces) as a whole. 



Table 7.  Average PCC and MSE scores for all similarity functions under test   

               Similarity 
  Metrics 

Tempo_Only Chord_Only Key_Tempo Key_Chord High_Level All_But_Chord Uniform_Average 

Avg. PCC 0.5604 0.2254 0.4330 0.2784 0.4973 0.6447 0.6677 

Avg. MSE 0.1126 0.1021 0.0616 0.0619 0.0714 0.0887 0.0894 

 
6.2.2.  Similarity Computation Efficiency 
 

We also conducted efficiency tests to assess the running time of our aggregate similarity computation function. Time 
results in Fig. 13 show that aggregate similarity computation time comes down to chord progression feature similarity 
time, where chord progression similarity is evaluated using the TPSD algorithm (cf. Section 4.3.2). TPSD runs in 
average linear time w.r.t. the smallest length between the two chord progressions (of the two music pieces) being 
compared, i.e., O(|cp|), whereas all other features require constant (near-zero) computation times, i.e., O(1), since they 
consist in comparing scalar values (e.g., comparing two tempos, or two note densities) or values of constant sizes (i.e., 
comparing two keys within the constant size circle of fifths graph).  
 

 

 

Fig. 13. TPSD running time w.r.t. minimum input chord progression length 
 

6.3. Sentiment Learning Evaluation 
 

To test the performance of our music sentiment learner (SL) module, we built a training set of 120 labeled musical 
pieces using online surveys and human tester training. This set was constructed following multiple experiments and 
modifications, aiming to produce high-quality training data which evenly represents all sentiment categories. To our 
knowledge, this is the first significant set of sentiment-labeled MIDI pieces, which is available online1 as a benchmark 
to promote future research in this area. In the following, we first describe the training set construction process in 
Section 6.3.1, and then present and discuss SL’s effectiveness and efficiency test results in Sections 6.3.2-to-6.3.4. 

 

6.3.1. Training set Construction 
 

Initially, we started with a small dataset of 24 pieces, ranging from classical to contemporary, each 30 seconds to 2 
minutes long, which we assembled into a survey2, where respondents were asked to rate each piece in terms of the six 
basic sentiments considered in MUSEC (i.e., anger, fear, joy, love, sadness, surprise), on an integer scale from 0 
(sentiment is not expressed) to 10 (sentiment is fully expressed). Testers were explicitly informed that they could rate 
any of the 24 pieces, and abstain from rating others if they felt they could not infer the sentiments confidently3. Every 
tester could stop the survey and submit the results at any stage of the process, to ensure consistency and high 
confidence in the results. Pieces were sequentially shuffled and sent to testers in a round-robin fashion to ensure an 
even distribution of responses. We also dealt with inconsistencies in piece ratings by eliminating scores with negative 
inter-tester correlation scores. In total, 359 responses were retained, with every piece receiving over 30 responses, the 
average of which was used to train the system. At that stage, the learning component scores produced an average 
PCC=0.53 using 3-fold cross validation (with 20 training pieces, and 10 testing pieces). Considering that the result 
was unsatisfactory, we proceeded to increase the size of the training set to 100 pieces by producing 76 “synthetic” 
pieces using MUSEC’s sentiment-based music composition (MC) module. These pieces were added to the system’s 
training set using the lifelong learning feature. Using 10-fold cross validation (with 90 training pieces, and 10 testing 
pieces), we obtained an average PCC=0.67, which was a major improvement over the 0.53 figure obtained previously. 

                                                 
1  Available online at: http://sigappfr.acm.org/Projects/MUSEC 
2  http://sigappfr.acm.org/Projects/MUSEC, SL survey form #1 (first part, 24-pieces), #2 (second part, 8-pieces), and #3 (third part, 8-pieces). 
3  While we could have asked the testers to provide a confidence score associated with every sentiment score, yet, we felt this would complicate 

things for non-expert testers, especially that our objective was to capture their inherent feelings when listening to the music pieces, rather than have 
them “rationalize” their ratings by adding confidence scores. Nonetheless, considering tester rating confidence is an interesting factor that we plan 
to evaluate in a future study.  
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After closely analyzing the data and the results, we identified another issue with our training set: it seemed biased 
toward certain emotions. Indeed, our dataset was mostly made of joyful and sad pieces, while angry, fearful, and 
surprising pieces were almost nonexistent. To remedy this situation, we added an additional 16 real pieces to the 
training set, expressing mostly anger and fear. These pieces were selected based on human sentiment scores obtained 
by averaging the results of two other online surveys2 designed in a similar format to the first survey (which produced 
the first 24 pieces). A total of 240 responses were retained, with every piece receiving over 30 responses. Finally, we 
tackled the bias issue further by removing 16 sad and joyful pieces from the 76-piece synthetic set, whilst replacing 
them with 20 more evenly distributed synthetic pieces. The resulting dataset, when looked at in a crisp manner (i.e., 
assigning a piece to the crisp sentiment category corresponding to the maximum sentiment score), consists of the 
following distribution (in number of pieces): anger (17), fear (17), joy (26), love (18), sadness (25), and surprise (17). 

For this final training set, we obtained an average PCC=0.63 using 10-fold cross validation (with 108 training 
pieces, and 12 testing pieces), which proved to perform better on a wider range of musical pieces. Though scoring 
lower than the 0.67 correlation score obtained using the initial 100-piece training set, results showed that the system 
was in fact doing a better overall job and performing better in terms of detecting anger and fear, whereas the previous 
dataset’s performance was due to over-fitting1. Therefore, we adopted the 120-piece dataset described above as our 
training set, and proceeded to test our system using this dataset in terms of both effectiveness and efficiency. 

 
6.3.2.  Sentiment Learner Fuzzy Scoring Effectiveness 
 

To assess the quality of our system’s sentiment learning effectiveness, we evaluated the sentiment learner (SL) 
module’s fuzzy scoring ability in correctly inferring sentiments from music pieces, using PCC and MSE w.r.t. user 
provided sentiment scores. The experimental evaluation was conducted while varying: i) training set size from 60, 80, 
96, to 108 pieces (using 2, 3, 5, and 10-fold cross validation) and ii) k-nearest neighbor (k) parameter score from 2, 3, 
5, 7, to 11. Results are shown in Fig. 14 and Fig. 15, and are averaged in Table 8. 

 
  

 
 

a. Varying the training set size 
 

 

b. Varying the number of k-nearest neighbors 
 

Fig. 14. PCC results obtained while varying the training set size (a), and the number of k nearest neighbors (b) 
 
  

 

a. Varying the training set size 
 

 b. Varying the number of k-nearest neighbors 
 

Fig. 15. MSE results obtained while varying the training set size (a), and the number of k nearest neighbors (b) 

                                                 
1    With the 100-piece training set, the system had “less” to learn since it was training on a more or less homogeneous training set, and thus over-fitted 

fitted w.r.t. the well represented sentiments, namely joy and sadness, but was less successful in inferring less represented sentiments like anger and 
fear. 
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Table 8. Average PCC and MSE wr.t. training set size and k-neireast neighbors parameters 

 

 Training set size1 k parameter2 

 60 80 96 108 2 3 5 7 11 

Avg. PCC 0.5728 0.6042 0.6163 0.6249 0.5864 0.5996 0.6099 0.6131 0.6126 

Avg. MSE 0.0406 0.0371 0.0380 0.0368 0.0438 0.0396 0.0366 0.0353 0.0355 

 
From these results, we can make three observations. First, we clearly see that system performance improves as 

the size of the training set increases, considering both PCC (steadily increasing) and MSE (steadily decreasing). This 
shows that SL’s ability to extract sentiments from musical pieces improves as it is exposed to and as it learns more and 
more pieces. Second, we also notice that PCC tends to increase as the number of nearest neighbors k increases (except 
with training set size =108 where it tends to stabilize), while MSE steadily drops with the increase of k. Following our 
analysis of fuzzy k-NN, as we increase the number of neighbors, the training vectors used for score computation tend 
to become more diverse and less similar to the target piece’s vector (increasing the learner’s training set variety, and 
thus increasing its resistance to noise when performing classification). Hence, training vectors become more normally 
distributed, which in turn reduces and normalizes the system generated sentiment vectors. Third, we can also notice 
that while PCC values tend to increase with the increase of k (despite slightly decreasing with k > 5), however, MSE 
consistently drops as k increases. Here, we make a distinction between the two measures. PCC is a correlation 
measure which compares the behaviors of the vectors, whereas MSE is a distance measure that measures their average 
Euclidian distance. Both are good measures for computing similarity. PCC reflects the overall similarity of a 
predicted sentiment vector w.r.t. the target vector, whereas MSE is only a good indication of how close scores are to 
target sentiments one by one3. As we increase the value of k, the training vectors used for score computation become 
more diverse and less similar to the target piece (and can be considered as “noise” to the learning algorithm). They 
become more normally distributed, which in turn reduces and normalizes the predicted sentiment characteristics. In 
other words, with higher k, sentiment scores lose their shape towards a more even sentiment distribution in which 
relative differences among sentiments drop. This change is detected through PCC, which drops due to the change in 
the overall vector shape. However, this “normalization” in scores tends to draw them closer to a mean sentiment 
score, which is reflected in a lower MSE distance error.  

 
6.3.3.  Sentiment Learner Crisp Classification Effectiveness 

 

In addition to evaluating SL’s fuzzy sentiment scores, we also evaluated its crisp scores, or so-called crisp 
classification quality. To do so, we used well-established precision, recall, and f-value measures from the literature 
(Baeza-Yates R. et al. 2011; Ghosh A. et al. 2003). High precision denotes that the classification task achieved high 
accuracy, grouping together music pieces that actually correspond to the same sentiment (class). High recall means 
that very few pieces are not associated to the appropriate sentiment (class) where they should have been. Hence, high 
precision and recall, and thus high f-value (indicating in our case excellent classification quality) characterize a good 
crisp sentiment extraction method. 

To perform crisp testing, we first had to convert SL’s fuzzy scores into crisp ones. This was done by considering 
the sentiment with the highest score as the representative sentiment for the piece. Human tester scores were also made 
crisp in this manner. In other words, while training and testing were performed based on the initial fuzzy training and 
testing scores, it was only at the final evaluation phase that the fuzzy-to-crisp conversion was made. The testing 
protocol used for crisp evaluation is described as follows:  

 

1) Compute a fuzzy sentiment score for every piece in the training set using cross-validation,  
2) Compute the system generated crisp sentiment (system generated class), and match it with the human tester 

crisp sentiment (human expected class), 
3) For each of the 6 sentiments, compute the number of true positives and true negatives, false positive and 

false negatives, and use the latter to compute sentiment-level precision, recall and f-value scores. 
 

Results in  Fig. 16 and Fig. 17 show SL’s crisp classification results, when varying i) training set size from 60, 80, 
96, to 108 pieces (using 2, 3, 5, and 10-fold cross validation, cf. Fig. 16) and ii) k-nearest neighbor (k) parameter value 
from 2, 3, 5, 7, to 11 (cf. Fig. 17). Results are summarized in Table 9. 

 

                                                 
1   PCC and MSE are averaged over all k-nearest neighbor variations, for every training set size. 
2   PCC and MSE are averaged over all training set size variations, for every k nearest neighbor value. 
3  To help illustrate this concept, let’s consider the following example, consisting of three vectors: V1 = (0.8, 0.6), V2 = (0.95, 0.45), and V3 = (0.65, 

0.75). Let V1 be our target vector and let V2 and V3 be our system estimate vectors. Upon first inspection, it is obvious that V2 is a better 
representative of V1 than V3, since it more or less exhibits the same behavior as V1 (higher first term). This similarity in behavior is visible through 
PCC, where PCC(V1,V2)=1 and PCC(V1,V3)=-1. However with MSE, we obtain MSE(V1,V2) = MSE(V1,V3) = 0.0225. This shows that MSE is 
only a good indication of how close scores are to target sentiments one by one, while PCC reflects the overall similarity of a predicted sentiment 
vector to the target vector as a whole. 

 



 
 

 

 

  

 

a. Precision results b. Recall results 
  

 
 

 

 

 d. F-value results  

Fig. 16. Precision, recall, and f-value scores for all 6 sentiments, when varying the training set size (number of folds), while 
fixing the number of k nearest neighbors (i.e., k=5) 

 
 

 

  

 

a. Precision results b. Recall results 
  

 
 

 

 

 d. F-value results  
 

Fig. 17. Precision, recall and f-value scores for all 6 sentiments, when varying the number of k nearest neighbors, while 
fixing the training set size (= 96, i.e., number of folds = 5) 

 

Results confirm our intuition concerning training set bias. On one hand, joy and sadness, which are represented 
with more pieces in the training set (i.e., 26 and 25 pieces respectively) compared with other sentiments (represented 
by 17 or 18 pieces each), benefitted little from the increased size of the training set (cf. Fig. 16) since they already had 
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sufficient training sample representations even with small training sets. However, they clearly benefitted more from 
the increased number of nearest neighbors k (including more relevant samples in their decision neighborhoods 
increases their precision and recall levels, cf. Fig. 17). On the other hand, less represented sentiments, like anger and 
fear, benefitted more from the increased training set size (cf. Fig. 16), allowing the learning algorithm to acquire 
enough “experience” to better learn these sentiments. Nonetheless, they benefitted less from the increase of k, which 
rather had a negative effect on their classification quality (increasing k without having enough training samples would 
include more noise in the decision neighborhoods, thus reducing classification precision and recall accordingly, as 
shown in Fig. 17 for the anger and fear sentiments).  

 
Table 9. Average f-value scores wr.t. training set size (number of folds), and k-nearest neighbor parameters 

 

 Training set size1 k nearest neighbors2 
 60 80 96 108 2 3 5 7 11 

Anger 0.3958 0.3579 0.3980 0.4373 0.3536 0.4512 0.4230 0.3648 0.3936 

Fear 0.3176 0.2538 0.3805 0.4717 0.3997 0.3917 0.3570 0.3645 0.2666 

Joy 0.6547 0.6880 0.6504 0.6597 0.5887 0.6632 0.6855 0.6814 0.6972 

Love 0.1626 0.1368 0.1299 0.2254 0.2256 0.2739 0.2213 0.0975 0.0000 

Sadness 0.5422 0.5522 0.4789 0.5428 0.4265 0.4833 0.5787 0.5867 0.5699 

Surprise 0.3907 0.3970 0.3845 0.4147 0.4176 0.4489 0.3856 0.3894 0.3424 

Avg. 0.4106 0.3976 0.4037 0.4586 0.4019 0.4520 0.4418 0.4140 0.3783 

 
All in all, considering all crisp sentiments put together, results in Table 9 show that average f-value scores tend to 

increase with the increase of the size of the training set, highlighting overall improved system performance, while 
stabilizing and even slightly decreasing with the increased number of nearest neighbors k (especially with less 
represented sentiments). We expect learner performance to improve even further as the training set size further 
increases (beyond our 120 piece dataset, allowing to better represent all sentiments). 

 
6.3.4. Sentiment Learner Efficiency 

 

Following Section 5, our SL component’s time complexity comes down to O(|cp|×T×k) where |cp| designates the 
smallest length chord progression between two pieces being compared, T the number of pieces in the training set, and 
k the number of nearest neighbors considered when producing the fuzzy sentiment scores. Linear dependency w.r.t. 
|cp| comes down to the complexity of our similarity computation function, i.e., O(|cp|), which was empirically 
evaluated in Section  6.2.2 (cf.  Fig. 13). Results in Fig. 18 confirm the linear relationship between SL’s execution 
time and the training set size (Fig. 18.a), as well as the number of k nearest neighbors (Fig. 18.b). 

 
 

 
 

 

 
a. Varying the training set size b. Varying the number of k-nearest neighbors 

 

 

Fig. 18. SL running time, when varying the training set size (T), and the number of nearest neighbors (k) 
 

6.4. Music Composer Evaluation 
 

Assessing the quality of the music composer (MC) module can be done in multiple ways. It can be done in terms of 
music theory, where the composed pieces are checked to confirm whether they meet music-theoretical criteria. Yet, 
given the nature of our composer and its integral music-theoretic validation procedures (maintained using our music-
theoretic knowledge base - KB, cf. Section 4.2), we found such testing to be of secondary importance, since all 
synthetic pieces inherently comply with all music theoretic rules considered in the KB module. Instead, we opted to 
test the effectiveness of our composer in terms of whether it can produce human-like, genuinely interesting, and 
sentiment expressive music. Note that not all theoretically-correct music is appealing, is deemed beautiful by humans, 
or expresses their desired feelings. Most crucially, we evaluated whether our composer truly hits the target sentiments 

                                                 
1   F-value scores are averaged over all k-nearest neighbor variations, for every training set size. 
2   F-value scores are averaged over all training set size variations, for every k nearest neighbor value. 
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it is given as input, when producing compositions as output. To that purpose, we used a smaller set of 15 real pieces, 
and compared them with 15 synthetic MUSEC compositions, considering both non-expert surveys and expert user 
feedback. In the following, we first describe the composer evaluation dataset construction process in Section 6.4.1, 
and then present and discuss MC’s effectiveness and efficiency test results in Sections 6.4.2-to-6.4.5. 

 
6.4.1.  Evaluation Criteria and Dataset Construction 

 

We designed our experiments to test three criteria: 
 

i. Composer’s Nature: it consists of an integer score from 0 to 10, where 0 indicates absolute certainty that the 
piece is composed by a computer, and 10 indicates absolute certainty that the piece is composed by a human. 
This comes down to a form of Turing test1 , where an overall score ≈ 5 indicates uncertainty about the nature 
of the composer, i.e., the human listener cannot tell if the piece comes from a human composer or a synthetic 
composer. MUSEC passes the Turing test if its pieces produce an average score ≥ 5, either confusing the 
listener as to its pieces’ nature, or tricking the listener into believing its pieces were composed by a human.  

ii. Appeal-Enjoyment: it consists of an integer score from 0 to 10, where 0 indicates a total lack of appeal or 
enjoyment by the listener, and 10 denotes extreme appeal or enjoyment, (Epstein R. et al. 2009) 

iii. Sentiment expressiveness: it consists of a vector of six integer values, from 0 to 10, representing the piece’s 
expressiveness of the six sentiments considered in MUSEC (anger, fear, joy, love, sadness, surprise), where 
for every sentiment, 0 indicates that the sentiment is not expressed, and 10 indicates that the sentiment is fully 
expressed (similarly to the user sentiment vectors produced in the SL evaluation process, cf. Section 6.3). 

 

Table 10. Set of 15 synthetic MUSEC compositions utilized in MC’s experimental evaluation 
 

Piece 
# 

Target Sentiment Scores Mutation Distribution/ 
Configuration Anger Fear Joy Love Sadness Surprise 

S1 0.5 0.2 0 0 0.2 0 Standard (all mutation probabilities=0.1) 
S2 0.3 0.5 0.2 0.2 0.4 0.4 Standard 
S3 0 0 0.8 0.6 0 0.2 Standard 
S4 0.4 0.5 0 0 0.3 0.1 Standard 
S5 0.3 0.3 0 0 0.7 0 Standard 
S6 0 0 0.7 0.3 0 0.3 Standard 
S7 0.4 0.2 0 0 0.4 0 Standard 
S8 0.7 0.3 0 0 0.7 0 Standard 
S9 0.3 0.7 0 0 0.7 0 Standard 
S10 0 0 0.4 0.8 0 0 Standard 

S11 0 0 0.6 0.6 0 0 
Silence mutation probability = 0.05, restricted 

divisions and repetitions to even split 
S12 0 0.3 0.3 0.3 0.3 0.6 Standard 

S13 0 0 1 0.5 0 0 
Silence probability = 0.05, restricted divisions and 

repetitions to even split 

S14 1 0 0 0 0 1 
Silence probability = 0, restricted divisions and 

repetitions to even split 

S15 1 0 0 0 0 0 
Trille, Appoggiatura and Double Appoggiatura 

probabilities are set to 0.2 

 
To evaluate the above criteria while ensuring unbiased results, we built our experimental dataset with the 

assistance of an expert: professional composer and music instructor Anthony Bou Fayad2. Together, we produced a 
dataset consisting of 30 pieces: 15 real and 15 synthetic (produced by MUSEC’s MC), each up 2 minutes long. To our 
knowledge, and following existing literature on algorithmic music composition evaluation (cf. Section 3.2), the latter 
would be the first dataset of MIDI pieces used for sentiment-based algorithm music composition evaluation3. Initially, 
we used MUSEC’s MC module to generate 15 compositions4, each between 30 and 90 seconds in length, such that the 
overall composition set evenly portrays MUSEC’s six primary sentiments. The pieces were presented to the expert for 
feedback. While he found several compositions to be “interesting” and “new”, he highlighted a lack of rhythmic 
“logic” in some of the compositions, largely due to unusual divisions (3 to 1, rather than an even split), and repetitions 
produced by certain mutation operators such as Repeat and Compress (cf. Section 4.4.4). He also suggested that 
mutation probabilities be tweaked between pieces so that the system can compose pieces reflecting similar sentiments 
in a different style. As a result, 4 of the initial 15 MUSEC compositions were replaced with new compositions arising 
from different mutation probabilities and configurations. Table 10 lists the 15 final MUSEC compositions, their target 
sentiment scores, as well as the mutation configurations used during their creation.  

                                                 
1 The Turing test was proposed by Alan Turing in 1950, designed to test the ability of a machine to exhibit intelligent behavior that is equivalent to or 

indistinguishable from that of a human. It was originally used to evaluate machines mimicking human conversation (originally referred to as the 
“imitation game”). A machine passes the Turing test if, after a number of questions, the human tester (asking questions) cannot know if the answers 
come from a human or a machine (Epstein R. et al. 2009). 

2 Anthony Bou Fayad is a processional composer, pianist, and music instructor in the Antonine University’s School of Music, located in Baabda, 
Mont Lebanon. He also holds a Master’s of Computer Engineering, specializing in multimedia data processing, which allowed him to easily 
understand the context and purpose of our study, helping us set up the experimental process. Mr. Bou Fayad was partly remunerated for his efforts, 
mainly for playing and digitally recording all pieces, while volunteering his consulting services. 

3 Some music composition systems provide sample pieces online, e.g., (Diaz-Jerez G. 2011; SACEM 2016), yet none of them are sentiment-based. 
4 Using a population size S = 50, a generation size N varying between 50 and 80, a branching factor B = 10 and a fitness-to-variability ratio R = 0.7. 

All mutation probabilities were set to 0.1 



Then, with the help and suggestions of the expert, we selected 15 human compositions of similar sophistication 
and musical standard to the considered MUSEC compositions, thus producing our experimental 30-piece dataset (cf. 
Table 11). Anthony Bou Fayad, as a professional pianist, performed all thirty pieces and recorded them using the 
same digital piano. We also asked that he represents MUSEC composition themes loyally and to reflect their chord 
progressions accurately. Given that MUSEC only produces static arrangements for its main melodies, all thirty pieces, 
real and synthetic, were performed with similar arrangement sophistication, to ensure that all pieces would be judged 
for their melodies. The pieces’ music charts, digital recordings, and experimental results are available online. 
 

Table 11.  Set of 15 real pieces used in MC’s experimental evaluation 
 

 
 
 
 
 
 
 
 
 
 
 
 
6.4.2.  Composer Effectiveness 
 

Similarly to MUSEC’s SL evaluation process, the 30 pieces were randomly assembled into a survey1, where 
respondents were asked to rate the pieces in terms of: i) their nature, ii) appeal, and iii) sentiment expressiveness. 
Pieces were sequentially shuffled and sent to testers in a round-robin fashion to ensure an even distribution of 
responses. We also dealt with inconsistencies in ratings by eliminating entries with negative inter-tester correlation 
scores. In total, 348 responses were retained, with every piece receiving at least 30 responses. 
 

 

 

a. Average scores for the 15 synthetic pieces 
 

 

 

 
 

b. Average scores for the 15 real pieces 
 

 

Fig. 19. Composer’s nature average scores for both synthetic and real pieces considered in MC’s evaluation 

                                                 
1 Available online at: http://sigappfr.acm.org/Projects/MUSEC, MC survey forms #1-to-#10. 

Piece # Piece Name Piece Composer 
R1 Prélude No 2 Frédéric Chopin 
R2 Désir, Op 57 No 1  Aleksandr Scriabin 
R3 Le Gibet Maurice Ravel 
R4 5 Piano Pieces Franz Liszt 
R5 Prélude No 10  Sergei Rachmaninoff 
R6 Prélude No 4 Aleksandr Scriabin 
R7 Suite in G Major Henry Purcell 
R8 Ziemlich langsam, Albumblatter, Op. 99  Robert Schumann 
R9 Sicilienne Gabriel Fauré 
R10 Prélude No 8 Johann Sebastian Bach 
R11 Gnoissienne No 1 Éric Saté 
R12 Impromptus Op 142 No 2 in A flat Major Franz Schubert 
R13 Melody Arno Babajanian 
R14 Andantino Aram Khachaturian 
R15 Lebewohl  Anthony Bou Fayad 



i) Composer’s Nature: average composer nature scores for all 30 pieces are shown in Fig. 19 and are provided in 
Table 12.a. Results were very encouraging, as MUSEC compositions seemed to perform slightly better than their 
human counterparts, earning an overall average composer nature score of 5.736 compared with 5.548 for real pieces. 
Results show that 13 out of 15 synthetic pieces produced a score ≥ 5, meaning that listeners were either confused 
about the nature of the pieces (e.g., with scores ≈ 5 such as with pieces S3, S7, S8, and S10) or considered the latter to 
be composed by humans (compared with 12 out of 15 real pieces having scores ≥ 5). Real piece R15 was deemed 
“most human” by the listeners (with average score = 7.795), followed by two MUSEC compositions: S1 and S4 (with 
scores = 7.189 and 7.113 respectively). This shows that listeners had difficulty discerning between the real pieces and 
MUSEC’s synthetics. Considering the above results, we can say that MUSEC passed this Turing test, where most of 
its synthetic pieces were either confusing to listeners as to their nature, or simply tricked them into believing they 
were composed by humans. 
 

ii) Appeal-Enjoyment: Results are provided in Fig. 20 and Table 12.b. MUSEC compositions seemed to 
outperform their human counterparts in terms of appeal and enjoyment by the listeners, producing an average score of 
6.498, compared with 6.035 obtained with real pieces. All synthetic pieces received appeal-enjoyment scores ≥ 5 (i.e., 
they scored “above average”) whereas 4 real pieces (R1-3 and R5) received scores < 5 (i.e., they were considered as 
rather not appealing-enjoyable by listeners). We also found that composer nature and appeal-enjoyment scores shared 
a very strong positive correlation, producing an overall PCC score of 0.856 for all 30 pieces. This correlation can be 
clearly seen in Fig. 21, and demonstrates that listeners might have associated the appeal-enjoyment of a piece with the 
human nature of its composer, revealing a potential implicit assumption: human listeners seemed to consider that 
computer systems cannot produce enjoyable pieces (or that enjoyable music can only be created by human 
composers). The obtained results however clearly contradict the latter assumption (many “curious” testers who 
requested to know the true nature of the pieces they enjoyed, after completing the test surveys, were “amazed” to learn 
that many of those pieces were synthetic). 
 

 

 

a. Average scores for the 15 synthetic pieces 
 

 
 

 
 

b. Average scores for the 15 real pieces 
 

 

Fig. 20. Appeal-Enjoyment average scores for both synthetic and real pieces considered in MC’s evaluation 
 
 



iii) Sentiment Expressiveness: We computed the average sentiment scores for all 15 synthetic pieces and 
correlated the latter with their initial target sentiment scores provided as input at composition time. Results are 
provided in Table 13. We realized that MUSEC generally performs well for most of its composition tasks in 
expressing the intended target sentiments, obtaining low (negative) PCC scores for only 3 out the 15 synthetic pieces 
(i.e., S1, S4, and S5). The latter compositions for which MUSEC did not perform well seem to have: i) high love and 
joy scores when not required to, or ii) a high surprise score when an angry piece is requested from the system. The 
high love and joy scores are particularly apparent in pieces S1, S4 and S5, which are written in a minor key (normally 
used to reflect sadness rather than joy and love), while the high surprise score of an angry composition is apparent in 
pieces S15 and S8. All in all, MUSEC was able to quite accurately express the correct sentiments in 12 out of the 15 
pieces, particularly those conforming to standard musical logic (major keys generally portray positive emotions, 
whereas minor keys generally portray negative emotions), producing an overall PCC=0.483 (where PCC=0.724 when 
disregarding negative correlation pieces, i.e., S1, S4, and S5). MUSEC however seemed to struggle when users 
produced “unconventional” sentiment scores, i.e., when they found positive/negative sentiments in otherwise 
minor/major key pieces respectively (namely in S1, S4, and S5). Here, we also note that the latter pieces (having 
unconventional user sentiment scores) produced some of the lowest inter-tester correlation scores (0.033 for S5, 
0.1509 for S1, and 0.233 for S4), compared with the remaining pieces where inter-tester correlation is generally > 0.3 
(cf. Table 13). In other words, even human listeners themselves tend to diverge greatly in rating the sentiments 
expressed in the latter pieces, which could also explain MUSEC’s low correlation scores. 

 

Table 12. Average human ratings evaluating: the composer’s nature (a) and appeal-enjoyment (b) for both synthetic 
and real pieces considered in MC’s evaluation 

 

a. Composer nature scores                                                 b. Appeal-Enjoyment scores 

Synthetic piece # Score Real piece # Score Synthetic piece # Score Real piece # Score 
S1 7.189 R1 3.548 S1 7.135 R1 3.774 
S2 6.324 R2 3.838 S2 6.892 R2 4.135 
S3 5.067 R3 4.400 S3 5.933 R3 4.629 
S4 7.133 R4 4.706 S4 6.867 R4 5.829 
S5 5.526 R5 5.064 S5 6.789 R5 4.613 
S6 6.853 R6 5.135 S6 7.286 R6 5.432 
S7 5.216 R7 5.448 S7 5.405 R7 6.633 
S8 5.093 R8 5.567 S8 6.093 R8 6.414 
S9 6.029 R9 5.711 S9 6.057 R9 6.533 
S10 5.206 R10 6.000 S10 6.088 R10 7.333 
S11 4.861 R11 6.088 S11 5.108 R11 6.735 
S12 6.886 R12 6.558 S12 7.371 R12 6.774 
S13 5.353 R13 6.674 S13 7.353 R13 6.86 
S14 4.564 R14 6.684 S14 6.179 R14 6.789 
S15 4.743 R15 7.795 S15 6.914 R15 8.051 

Average: 5.736 Average: 5.548 Average: 6.498 Average: 6.035 

 
 

 
 

 

Fig. 21. Scatter plot highlighting correlation between composer nature (Turing) and appeal-enjoyment scores 
 

Looking forward, we will attempt to further train the system to incorporate the surprise side-effect into its own 
computations when creating angry pieces, and to account for potential positive/negative emotions appearing implicitly 
in otherwise minor/major-oriented compositions.  
 
6.4.3.  Expert Feedback 

 

In addition to non-expert surveys, we also acquired the feedback of 3 music experts. First, Anthony Bou Fayad 
(mentioned previously) helped up set-up, prepare, and record the experimental music dataset, suggesting that mutation 
probabilities be tweaked between pieces so that the system can compose pieces reflecting similar sentiments in a 
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different style (as discussed previously). The 4 pieces composed with different mutation configurations following the 
expert’s recommendations (i.e. pieces S11, S13, S14 and S15) performed well in terms of sentiment portrayal 
(average PCC=0.781) despite their differing styles, and seemed to be appealing/enjoyable by listeners (with average 
appeal-enjoyment = 6.388). However, their composer nature (Turing test) performance was not satisfactory, where 
pieces S11, S14 and S15 were the only three MUSEC compositions to score a composer nature score < 5 (i.e., 
identified by listeners as non-human compositions), while piece S13 only scored 5.353. In fact, their average 
composer nature was only = 4.880. From this, we can infer that these pieces, composed differently from the other 11 
MUSEC pieces, managed to reflect the sentiments fed into the system whilst also being appealing/enjoyable by users, 
but, due to their different and unfamiliar styles, were perceived to be written by a computer composer (i.e., failing the 
Turing test). These results confirm the expert’s initial feedback: that the system’s probabilistic parameters, if properly 
tweaked, can produce novel compositions expressing the same emotions but in different styles. 

 
Table 13.  Sentiment expressiveness results for the 15 synthetic pieces produced by MUSEC’s MC module 

 

MUSEC 
Piece # 

Anger Fear Joy Love Sadness Surprise PCC MSE 
Inter-tester 
correlation 

S1 
Target 0.5 0.2 0 0 0.2 0 

-0.767 0.143 0.151 
Result 0.284 0.281 0.551 0.565 0.368 0.395 

S2 
Target 0.3 0.5 0.2 0.2 0.4 0.4 

0.469 0.041 0.360 
Result 0.616 0.486 0.230 0.439 0.694 0.427 

S3 
Target 0 0 0.8 0.6 0 0.2 

0.949 0.037 0.267 
Result 0.187 0.153 0.563 0.540 0.303 0.313 

S4 
Target 0.4 0.5 0 0 0.3 0.1 

-0.657 0.115 0.233 
Result 0.173 0.290 0.413 0.580 0.479 0.340 

S5 
Target 0.3 0.3 0 0 0.7 0 

-0.030 0.119 0.033 
Result 0.474 0.346 0.445 0.427 0.466 0.494 

S6 
Target 0 0 0.7 0.3 0 0.3 

0.825 0.063 0.468 
Result 0.249 0.206 0.669 0.691 0.340 0.380 

S7 
Target 0.4 0.2 0 0 0.4 0 

0.726 0.075 0.318 
Result 0.381 0.465 0.247 0.354 0.681 0.335 

S8 
Target 0.7 0.3 0 0 0.7 0 

0.641 0.091 0.129 
Result 0.509 0.388 0.344 0.298 0.470 0.488 

S9 
Target 0.3 0.7 0 0 0.7 0 

0.680 0.098 0.136 
Result 0.446 0.431 0.386 0.443 0.637 0.383 

S10 
Target 0 0 0.4 0.8 0 0 

0.894 0.078 0.342 
Result 0.188 0.282 0.591 0.658 0.397 0.365 

S11 
Target 0 0 0.6 0.6 0 0 

0.906 0.045 0.399 
Result 0.121 0.235 0.570 0.581 0.373 0.247 

S12 
Target 0 0.3 0.3 0.3 0.3 0.6 

0.384 0.049 0.343 
Result 0.269 0.224 0.671 0.560 0.254 0.497 

S13 
Target 0 0 0.8 0.5 0 0 

0.794 0.078 0.636 
Result 0.197 0.165 0.779 0.579 0.176 0.603 

S14 
Target 1 0 0 0 0 1 

0.943 0.148 0.1154 
Result 0.492 0.349 0.362 0.321 0.344 0.603 

S15 
Target 1 0 0 0 0 0 

0.481 0.179 0.067 
Result 0.514 0.357 0.417 0.303 0.382 0.551 

Average: 0.483 0.091 0.266 
Average (without negative PCCs) 0.724 0.082 0.301 

 
We also conducted two separate interviews with two other experts, Robert Lamah, senior piano instructor at the 

Lebanese National Higher Conservatory of Music1, and Joseph Khalifé, senior composer and musician-in-residence at 
the Lebanese American University2. After listening to MUSEC’s compositions, both experts reported that the pieces’ 
music quality was “very good”, and described the compositions as being “beautiful” and “interesting”. Ms. Lamah 
also enjoyed what he called MUSEC’s composition “eccentricity”. He suggested enhancing MUSECs composition 
functionality by offering musical experts the ability to suggest and teach musical modifications to the system so that it 
can better reach its target sentiments. As for Joseph Khalifé, he particularly stated that he would have had difficulties 
discerning between the MUSEC and human pieces we presented to him, had he not known the real pieces in advance. 
He also suggested extending MUSEC’s composition functionality, to compose music that, not only expresses feelings, 
but rather “tells a story” related to those feelings and their evolution over the course of the composition.  

However, both experts expressed concerns regarding the potential applications of the system (cf. Section 7), and 
the possibility of such systems replacing human composers in the future. Joseph Khalifé explained that “while a 
computer can compose music based on a specific and brief set of inputs, it probably cannot simulate the passion that 
goes into the music composition process”. 
 
6.4.4.  Comparative Study 
 

An experimental study comparing the effectiveness of MUSEC with existing approaches would have been interesting, 
and would have allowed us to further evaluate our method. Nonetheless, the diversity of related studies in the 

                                                 
1 http://www.conservatory.gov.lb/disciplines/discipline/21 
2 http://comm.lau.edu.lb/joseph-khalife 



literature (cf. Section 3), which significantly differ in their objectives, premises, and techniques used to perform 
composition, and most importantly the lack of a benchmark of sentiment-based compositions from these methods (few 
authors provide sample compositions by their methods, while none of them provide sentiment ratings), makes it 
difficult to perform a comparative empirical study. Hence, we currently settle for a qualitative comparison, depicting 
the main characteristics, commonalities, and differences between our approach and related methods. 

Table 14 summarizes the main differences between our method and related solutions. On one hand, MUSEC: i) 
accepts as input a vector of scaled (∈[0, 1]) sentiment scores, or a piece of (MIDI) music that can be processed to 
extract a scaled sentiment vector, ii) adopts a categorical sentiment model (consisting of six basic sentiments) which is 
intuitive and simple to understand by users who will use it to express their input sentiments accordingly, iii) produces 
pieces that reflect a target crisp sentiment (e.g., love) or a collection of fuzzy sentiments (e.g., 65% happy, 20% sad, 
and 15% angry), iv) consists of an evolutionary composition module integrating a music sentiment-based machine 
learning module as its fitness evaluation function, in order to ensure flexibility and variability of MUSEC’s 
compositions for similar input sentiment requests as the system gains experience and dynamically adapts to its user’s 
particular inclinations, v) utilizes an extensible set of 18 different music-theoretic mutation operators (trille, staccato, 
repeat, compress, etc.), stochastically orchestrated within the evolutionary process, to add atomic and thematic 
variability to the compositions, vi) composes polyphonic pieces while adhering to “correct” music structure and 
coherence brought about the music-theoretic rules embedded within the KB module. 

On the other hand, most existing solutions; i) accept different kinds of inputs (e.g., crisp scores (Hoeberechts M. 
et al. 2009), gestures (Morreale F. et al. 2016), texts (Kirke A. et al. 2017), or EEGs (Kirke A. et al. 2011)) to describe 
sentiments following the valence/arousal dimensional model, which are not always intuitive or easy to produce by 
non-expert users, ii) produce as output crisp-only or two-dimensional (valence/arousal) sentiment scores which are 
less descriptive in their sentiment expressiveness compared with the categorical model1, iii) utilize translation-based 
models (Hoeberechts M. et al. 2009; Huang C. et al. 2013; Livingstone S. R. et al. 2010), or mathematical model-
based techniques (Kirke A. et al. 2011; Kirke A. et al. 2017; Morreale F. et al. 2016), creating relatively simpler or 
less creative music where the main challenge lies in selecting appropriate inputs and converting them into music, iv) 
are mostly static and heavily reliant on predefined rules or rule-based models, v) produce mostly monophonic music 
(Hoeberechts M. et al. 2009; Kirke A. et al. 2017), while few approaches produce polyphonic music (Kirke A. et al. 
2011; Morreale F. et al. 2016) although using author-developed heuristics to extend an initial monophonic melody 
into polyphonic music. 

 

Table 14.  Comparing our solution with existing approaches 

Approach Input Sentiment Model Sentiment Analysis Composition Approach Music Texture type 

AMEE (Hoeberechts 
M. et al. 2009)  

Crisp (∈{0, 1}) 
sentiment scores 

Categorical 
(10 emotions) None2 

Rule-based, 
Autonomous 

Monophonic music 

TRAC (Kirke A. et al. 
2017) 

Movie Script 
Valence/Arousal/Domi

nance 

Syntactic structure 
and word-level 

analysis3 
Rule-based, Assisted Monophonic music 

EEG System (Kirke A. 
et al. 2011) 

EEG readings Valence/Arousal Rule-based 
Rule-Based with 

heuristics, Assisted, 
Polyphonic music 

Huang C. & Lin E. 
(Huang C. et al. 2013) 

Scaled (∈[0, 1]) 
Valence/Arousal 

scores 
Valence/Arousal None2 

Rule-Based, 
Autonomous 

Not specified 

ROBIN (Morreale F. et 
al. 2016) 

User gestures in 
music room 

Valence/Arousal User gesture analysis 
Rule-based with 

heuristics, Autonomous 
Polyphonic music 

MUSEC 
Scaled (∈[0, 1]) 

sentiment scores, or 
musical piece 

Categorical 
(6 emotions) 

Machine Learning 
(for musical inputs) 

Evolutionary with 
embedded musical rules, 

Autonomous 
Polyphonic music 

 
6.4.5.  Composer Efficiency 
 

Following our complexity analysis in Section 5, MC’s time complexity simplifies to ( )( )( )2× × ×O N B S T N S× +
 
where 

N represents the number of generations, B the branching factor, S the population size, and T the learner’s training set 
size. Linear dependency w.r.t. training set size T comes down to the complexity of the SL module (which performs 
fitness trimming in the evolutionary process), and has been empirically evaluated in Section 6.3.4 (Fig. 18).  

Results in Fig. 22 confirm MC’s: i) quadratic dependency on the number of generations N (Fig. 22.a), ii) almost 
linear dependency on the branching factor B (Fig. 22.b), and iii) almost quadratic dependency on population size S 
(Fig. 22.c). (Russell J. 1980) 

                                                 
1   Recall that states where both valence and arousal dimensions converge (e.g., both valence and arousal are high, or both are low) occur more often 

than states were they diverge, indicating a potential bias or ambiguity in the model (as stated by the model’s creator in (Russell J. 1980)). 
2  Target sentiments (to be expressed by the composed piece) are manually provided by the user, where no automatic sentiment inference is involved. 
3  Target sentiments are inferred from text parsed from a movie script, to compose an affective movie soundtrack. 



7. Applications 

In this section, we discuss some of the main application scenarios which can benefit, in one way or another, from the 
MUSEC framework and its modules, ranging over: i) information retrieval, ii) music composition, iii) assistive music 
therapy, and iv) social intelligence. 
 

 

 
 

 

 

a. Varying the number of generations N b. Varying the branching factor B 
 

    
  

 
 
 

 

 c. Varying population size S
 

 
 
 

Fig. 22. MC component’s running time w.r.t. the number of generations N, branching factor B, and population size S1 

7.1. Information Retrieval 
 

Sentiment-Based Music Retrieval: MUSEC’s SL (sentiment learning) module can be utilized as a core component 
toward building a sentiment-based music retrieval engine, allowing to search for musical pieces based on the 
sentiments they express, versus traditional feature-based music retrieval approaches.  

Searching for music based on traditional features: i) metadata and context features such as lyrics (Panda R. et al. 
2013; Xiao H. et al. 2010), user or the artist profiles (Lin C.L. et al. 2016; Schedl M. et al. 2013), or ii) intrinsic music 
features, i.e., symbolic and frequency-domain features (Demopoulos R.J. et al. 2007; Schedl M. et al. 2014) such as 
the ones extracted by MUSEC’s FP module, though useful and powerful in their own right, rarely offer the chance to 
identify/discover new/original/unexpected musical pieces/genres. Searching for a song by its lyrics or by the artist 
information would return as a result songs having similar lyrics or songs written by the same artist, while searching 
based on low-level music features would return as a result musically-similar pieces. However, with sentiment-based 
music retrieval, users would simply state their target sentiments as a query, and then the system would find pieces that 
match their sentiment needs, i.e., pieces that could be very dissimilar in style/genre/music content but that would 
make them feel a certain way (happy, exited, etc.). In other words, users would not be thinking about the lyrics, the 
artist, or any musical features in formulating their queries, but would rather directly state their sentiment needs, while 
the system retrieves relevant musical pieces accordingly. 

 
Universal Retrieval System: MUSEC’s SL module, combined with other sentiment analysis tools targeting 

different kinds of data (e.g., text, images, videos) could also serve as the building blocks of a universal sentiment-
based retrieval system. 

Most existing information retrieval (IR) systems are geared toward specific kinds of data: text, images, videos, 
music, etc. The most prominent IR engines are text-based (Baeza-Yates R. et al. 2011; L'Hadj L.S. et al. 2016), while 
recent efforts are leading toward image retrieval (Ayadi M.G. et al. 2016; Iakovidou C. et al. 2014), video retrieval 
(Chivadshetti P. et al. 2015; Mühling M. et al. 2016), and music retrieval systems (Hauger D. et al. 2013; Schedl M. 

                                                 
1  All tests were run while considering a fixed fitness-to-variability ratio R = 0.7, and using all of SL’s experimental dataset for training, i.e., 

T=120 pieces. 
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et al. 2014) based on their intrinsic features. These systems, each used for their own goals, are divergent by design, 
since their target data are described using different features, and thus are mostly unrelated. In this context, a major 
challenge would be developing a full-fledged IR system handling multiple document types without it being a mere 
concatenation of their independent components. By integrating MUSEC’s SL for musical sentimental analysis, with 
other relevant text/image/video-based sentiment analysis tools, all data types could then be queried with a single 
sentiment query (expressing the user’s sentiment needs, in terms of crisp or fuzzy sentiment scores), producing data-
type independent results which are based solely on the data’s sentiment scores. In this context, an integrated 
sentiment analysis tool would allow to bridge the gap between data-types, and to create a universal sentiment-based 
retrieval system which returns any (type of) document answering the user’s target sentiments. The users could 
provide as input a sentiment query, or an object (e.g., text, image, music) from which sentiment scores could be 
automatically inferred. Sentiment vectors would then be used as a common referential (mediator) space, bridging the 
gap between native (data-type specific) feature vectors describing every type of object. After matching the user’s 
input sentiment vectors with those of objects in the repository, the most sentiment-similar objects would be returned 
to the user, ranked following their sentiment relevance (or any other ranking function deemed relevant by the user).   

7.2. Music Composition 

Sentiment-based Music Composer: This is a straightforward usage of MUSEC: providing an algorithmic composer 
that uses sentiment predictions as a guide in its compositions, much like human composers writing music to reflect 
their state of mind and their emotions. This usage becomes more relevant when MUSEC is asked to compose new 
pieces based on an existing piece’s expected emotional response. Using its sentiment learner (SL) module, MUSEC 
can accept as input a certain music piece, analyze the sentiments it expresses, and then use the produced sentiment 
vector to compose new music accordingly. In other words, users can not only input their target sentiment vectors, but 
they can also provide MUSEC with a certain piece as input, and then ask it to compose a completely different one 
such that the new composition reflects the same sentiments as the input piece. This can be useful for professional 
composers as well, who can require the system to generate a piece that is similar (in the sentiments it expresses) to one 
of their own compositions, which they can later utilize as a new source of inspiration for their future compositions. 

 
Automatic Composer Assistant: In addition to functioning alone as a full-fledged music composer, MUSEC 

could provide preliminary motifs and themes that would be further developed/completed by human composers, 
forming the basis of full-fledged compositions. This could provide composers with the inspiration needed to help 
them get out of their so-called composer’s block, i.e., a mental block to getting music projects started or completed, 
which is a very familiar experience with composers (as well other forms of creative tasks, such as writing, painting, 
sculpting, etc.) (Yiu R. 2013). It would provide them with the motivation and insight to look outside of the box of 
their inherent composition styles, providing them with inspiration toward producing new and original compositions. 

Another scenario would be for a human composer to write the beginning or parts of a piece, and then ask an 
automated composer assistant to compose the rest, while adhering to the themes and sentiments expressed in the initial 
parts. This scenario was suggested by renowned Lebanese composer and musician Jean Marie Riachi1, after 
participating in a live tutorial event2 during which we demonstrated and tested the different functionalities of MUSEC. 
Such functionality, he added, could help him gain valuable time in the composition process, focusing on the 
innovative tasks of the process, while helping him increase his productivity.  

7.3. Assistive Music Therapy 

Music sentiment analysis and composition could also be useful is assistive music therapy, a novel discipline where 
music is used within a therapeutic relationship to address emotional, cognitive, and social needs of individuals (Dell 
A.G. et al. 2011; McChord K.A. 2004). After assessing the needs of each patient, the music therapist provides the 
indicated treatment including creating, singing, moving to, and/or listening to music. Music therapy has been shown 
effective in various areas such as: physical rehabilitation, increasing people's motivation to become engaged in their 
treatment, helping restore patients’ memories and enhance their moods, and providing an outlet for expressing 
feelings (especially when dealing with autistic children) (Wan C.Y. et al. 2011; Whipple J. 2004).  

One area which can specifically benefit from these techniques is experimental psychology, where an automated 
music-based sentiment analysis tool would allow the psychologist to analyze the primary emotions of their patients 
when listening to certain pieces of music, selecting musical pieces in line with a therapeutically-appropriate mood or 
emotional state, in order to characterize their psychological states accordingly (e.g., analyzing whether the patient’s 
sentiment perceptions match the expected sentiments, and highlighting unexpected sentiment perceptions which could 
help diagnose the case or prescribe treatment accordingly). This could be especially helpful in treating patients with 
Autism Spectrum Disorder (ASD), by learning their emotional states and helping them express their emotions through 
music, e.g., (Kim J. et al. 2009; See C.M. 2012; Whipple J. 2004). This is especially useful with low functioning ASD 

                                                 
1   https://sv.wikipedia.org/wiki/Jean-Marie_Riachi 
2 http://www.lau.edu.lb/news-events/news/archive/music_composers_face_off_with_/. The event included an active participation from a live 

audience of LAU students, faculty, staff, and friends, who helped rate MUSEC’s compositions and evaluate its sentiment scoring accuracy. 



patients who have serious difficulties in writing and reading texts (traditional means of communication), and tend to 
be more interactive to images and music. The psychologist could ask MUSEC to compose different pieces expressing 
different emotions she wishes to evaluate with her ASD patients, and then ask the patients to listen to the pieces and 
identify the feelings expressed: either verbally (if possible), or by pinpointing other music pieces expressing the same 
sentiments. If the selected target piece’s scores are close to the reference piece’s scores, this means that the patient has 
a good perception of sentiments in music. Else if the scores are quite different from those of the reference piece, this 
means that the patient is not able to recognize the proper feelings behind the music piece, and would need to be 
followed accordingly by the psychologist. The same process could be applied by combining other non-verbal stimuli 
such as images or videos. 

7.4. Social and Emotional Intelligence 

Another area which can benefit from sentiment-based music analysis is emotional intelligence: understanding human 
emotions and reacting accordingly (Berrett L.F. 2017). More specifically, emotional intelligence is defined as the 
ability to identify, evaluate, and control one’s own emotions, the emotions of others, and those of a group or people 
(Goleman D. 2005). It is a central building block of the broader area of social intelligence: the understanding and 
managing of others (Gkonou C. et al. 2017). While mainstream artificial intelligence (AI) research and applications 
traditionally emphasized the simulation of human cognitive aspects such as problem-solving and memory 
management, simulating emotional intelligence through automated sentiment analysis and affective computing has 
been receiving increased attention in the past couple of years, e.g., (Berrett L.F. 2017; Hovy 2015; Ravi K. et al. 
2015). The main motivation for this research area is to simulate empathy: where an artificial agent would recognize, 
understand, and consider human emotions, and would adapt its behavior accordingly to give an appropriate response 
to those emotions.  

While early affective computing approaches mainly focused on text-based analysis (Ravi K. et al. 2015), image 
and more recently music sentiment-based analysis are attracting increasing attention, with potential applications 
spanning many domains, including:  

- Social media applications: allowing sentiment-based content analysis and human-like suggestions. While most 
current social sites focus on text and images, mainstream sound and music sentiment analysis in social sites 
could be around the corner, with early solutions focused on discussing social perspective on music (Hauger D. 
et al. 2013; Iren D. et al. 2016), and evaluating listening behavior and composition styles (following the 
interactions and collective perceptions of members of a society) (McAndrew S. et al. 2015; Zangerle E. et al. 
2014), 

- Customer reviews analysis: on products and services, such as movie and song reviews matched with their 
emotional contents, where movies and songs both include music that can also be processed for sentiment 
analysis (e.g., comparing the actual emotions expressed by listeners/viewers, versus the emotions intended by 
the song/movie creators, and the latter’s success rates, target audience preferences, etc.) (Ravi K. et al. 2015; 
Xiao H. et al. 2010),  

- Information and tutoring tools: developing digital instructors and modeling tutoring environments (Barrett F.S. 
et al. 2010; Rahim A. et al. 2015), including music as a teaching or monitoring medium to invoke memory or 
personality traits,  

- Analyzing voter moods and mood swings (Ravi K. et al. 2015): considering not only voters’ text posts, but also 
the music they are listening to during a certain period of time, to infer their sentiments accordingly,  

- Pervasive AI applications: sensor-based linguistic, facial, gesture, behavioral, and specifically sound and 
music-based sentiment detection, analysis, and interaction (Holland S. et al. 2013; Yuanyuan W. 2014), e.g., 
allowing robotic systems to analyze different cues (through different input sensors) and automatically adapt 
their behaviors accordingly. Such a system could be implemented in a smart home, capturing sensory inputs 
from its residents and deciding on the right ambient music to play (joyful and relaxing, romantic, etc.). A 
similar solution could be applied to a smart automobile, which can collect sensory inputs from its driver and 
passengers, and then suggest or play music accordingly, e.g., cheering up the driver is she’s feeling sad, 
calming the children down if they seem excited, or stirring and motivating passengers on their ride to a 
competitive sports game. 

8. Conclusion 

This paper introduces a novel Music Sentiment-based Expression and Composition framework titled MUSEC, to 
produce polyphonic and thematic MIDI musical pieces that express human emotions, while being appealing and 
enjoyable by listeners. MUSEC can serve many application domains ranging over sentiment-based music retrieval, 
music composition, assistive music therapy, and social intelligence. It consists of four main modules: i) MIDI music 
feature parser (FP), ii) music theory knowledge base (KB) including operations and rules to produce “correct” music, 
iii) music sentiment learner (SL) consisting of a non-parametric fuzzy classifier that learns to infer sentiments in 
music, and iv) music sentiment-based composer (MC) consisting of an evolutionary-developmental framework with 
specially tailored genetic operators to produce new, diversified, and sentiment-expressive music compositions. 
Experimental results reflect our approach’s effectiveness in music sentiment learning and sentiment-based 



composition. Time analyses underline the impact of the training set size, the number of generations, the branching 
factor, as well as the population size considered (among other factors) on learning and composition time. Our 
experimental prototype and results have been made available online, including a benchmark of 70 sentiment annotated 
pieces: the first significant dataset of sentiment-labeled MIDI music, to promote future research in this area. 

Several MUSEC improvements lay ahead in the near future. First, we aim to further extend the FP module in 
order to consider a wider range of adapted low-level (spectral) (Costa Y. et al. 2017) and high-level (symbolic) music 
features (Panda R. et al. 2013), from which users can select and utilize the ones that best fit their needs (e.g., using the 
dominant  key to describe well structured classical pieces, versus a 24-vector fuzzy key distributions with atonal 
pieces, to better portray the latter’s key variations). Re-evaluating the importance of the chord progression feature and 
improving on its parsing heuristics, e.g., (Demopoulos R.J. et al. 2007; Kyogu L. 2008), would be especially 
interesting, in order to ensure that the full benefits of such a sophisticated feature can be reaped. Second, we plan to 
improve the design of our similarity evaluation function used within the SL module, morphing it into a learning 
(similarity-based) classifier on its own (Chen Y. et al. 2009), aiming to improve SL’s accuracy beyond the 0.63 PCC 
score it produced in our recent experiments. Exploring parametric deep learning models and comparing their 
performance with the non-parametric paradigm used in the current agent is yet another direction for improving SL’s 
performance. Third, we also aim to strengthen MC’s design, by leveraging machine learning or optimization 
techniques, e.g., (Hopfield J. and Tank D. 1985; Liu J. et al. 2010), and recent generative adversarial reasoning 
approaches, e.g., (Cai Z. et al. 2018; Cao Y. et al. 2019; Troiano L. et al. 2017), in order to learn MC’s optimal 
parametric configuration (e.g., chord distribution, mutation probabilities, modulation keys, etc., which are currently 
static or chosen manually by the user) producing compositions that not only reflect a target sentiment vector, but also 
reflect the “style” of the training compositions. For instance, the composer can be trained to “learn” a particular way 
to perform a chord from its training corpus, allowing mutating chords not only by using music theory, but also by 
using original “learned” ways of playing a chord (similarly to modern music compositions, where non-conventional 
chord expressions are becoming all too common). An intriguing possibility of this hybrid crossover between machine 
learning and evolutionary music composition is to allow the composer to learn and mimic the style of existing 
composers, e.g., mimicking the great Mozart for instance by learning all his compositions and then 
generating/evolving new compositions accordingly, which is both a challenging and a thought-provoking prospect. 
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Appendix 
 

 

Appendix I. Pseudo-code for Chord_Realizations Function 

The pseudo-code for the chord-Realizations recursive function is shown in Fig. 23. The isValid method mentioned in 
this pseudo-code refers to a method from MUSEC’s KB module which verifies that the progression from one chord to 
another is music-theoretically valid (i.e., conforming to all the rules built into KB, such as: no consecutive fifths, 
resolution of sensible tone, etc.). 

 
 

Algorithm: Chord_Realizations 
 
Inputs:   New chord Chroma Set: ChromaSet                           // chromas that make up the chord to be realized, provided by the KB module 

Last Chord’s frontier: frontier                                       // set of MIDI pitches to resolve 
Note array: notes                                                         // including notes to be used in realizations 
New Chord ID (root and type): chordID                       // provided by the KB module 
Last Chord currently in individual. previousChord      

 
Output: A Set of valid note realizations for the chord: validSet 
Begin 

Initialize a list of valid chord realizations: validSet  
If chromaSet ≠ ∅                                                                   // Some notes in the new chord are yet to be realized 
{  

For every Chroma chroma in ChromaSet 
{ 

 For every MIDI Pitch pitch in frontier 
{ 

Clone frontier to create frontierNew 
Remove pitch from frontierNew 
Clone notes and ChromaSet to create notesNew and chromaSetNew respectively 
Remove chroma from chromaSetNew 
 

 // At this point, the algorithm has decided to resolve a pitch from the old chord into chroma in new chord 
// It will now determine pitches through which chroma can be realized in the new chord 
 

Compute difference as being (pitch – chroma) % 12 
 

//MIDI pitches >=20 for piano, so difference is positive. This difference  
 

Compute MIDIPitch1 = pitch – difference             // First realization of chroma (dropping transition) 
Compute MIDIPitch2 = pitch + 12 – difference    // Second realization of chroma (rising transition) 
Add MIDIPitch1 to notesNew                               // 1st realization 
Add all valid chords from new recursive call on chromaSetNew, frontierNew, notesNew, ChordID to validSet;                      
                                                                             // Add answers from 1st recursive call 

 
Reset notesNew as being a new clone of notes 
Add MIDIPitch2 to notesNew                              // 2nd realization 
Add all valid chords from new recursive call on chromaSetNew, frontierNew, notesNew, ChordID to validSet;  
                                                                            // Add answers from 2nd recursive call  

}  
} 
Return validSet 

}  
else  
{                                                                                          // All chromas processed, terminate recursion here and create the new chord 

                                                                                                     
Instantiate the new chord newChord 
Set newChord’s key to the individual’s current key; 
Set newChord’s chord type to ChordID 
Convert notes MIDI Pitch array to note objects and add them to newChord’s note List  
Define newChord’s frontier based on ChordID and notes 
                                                                                                           //Validate progression using Knowledge Base 
If isValid(newChord, previousChord)                                //Validate music-theoretically 
{ 
     Add newChord to validSet 
} 

         Return validSet; 
    } 
End 
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Fig. 23. Pseudo-code of Chord_Realizations function 

 

 



Appendix II. Mutation Operators 
 

II.1. Trille operator 
 

The trille mutation operator affects the highest note, in terms of MIDI pitch, played in the chord. Its overall operation 
is visualized in Fig. 24. Based on the current key of the mutated chord, this operator retrieves the next note above the 
previously mentioned note in the key, using MUSEC’s KB module. It then proceeds to alternate rapidly between the 
two aforementioned notes over the first half-beat of the chord being mutated. This mutation mainly increases overall 
piece note density and note onset density. For more variability, a random decision is made at the time of the 
mutation’s execution to decide the range in which the alternating notes are performed. The following outcomes are 
possible: i) first quarter-beat, ii) second quarter-beat, and iii) full half-beat. Alternatively, based on the previous 
mutations that have affected the chord being mutated, the trille operator can also affect the final half-beat rather than 
the first half-beat of the given chord (i.e., at the end of a chord’s execution rather than at the beginning). 

 

 
 

Fig. 24. Simplified activity diagram describing the trille mutation operator 

 
II.2. Staccato operator 
 

This mutation affects all the notes being played as part of a chord. It mainly alters the way they are performed. In 
music theory, a “staccato” refers to a note being played in a manner detached and separated from the others (such that 
its own duration is very short). This operator reduces the duration of every note to an eighth beat so as to emulate this 
effect. 

 
II.3. Repeat operator 

 

This mutation operator repeats the notes being played as part of a chord’s realization a second time within the current 
duration of the chord. Fig. 25 provides a simplified activity diagram describing the process. It basically divides the 
current chord duration into two parts based on a random decision, takes all the notes currently being played, and then 
puts a copy of all the notes in both divisions. In order to maximize variability while maintaining musical structure, 
three divisions are allowed: i) 0.75/ 0.25 , where the first duplicate receives three quarters of the total chord duration 
and the latter duplicate receives the remaining quarter, ii) 0.5/0.5, an equal split of duration amongst the two 
duplicates, and ii) 0.25/0.75, as the inverse of the first division. To avoid overlap between notes, the copies are 
compressed to fit their new total duration (i.e., the individual note duration and onset time are scaled down to fit the 
smaller duplicate size). Any notes that have too short a duration following compression are discarded. 

 

 
 

Fig. 25. Simplified activity diagram describing the repeat mutation operator 
 

II.4. Compress operator 
 

This mutation affects the duration of a chord, and aims to raise overall piece note and note onset density. Unlike the 
repeat operator where the notes are duplicated, compressed, and then repeated across the whole chord duration, the 
compress operator only performs compression, thereby shrinking the chord’s overall duration. It halves a chord’s 
duration, and applies to the chord’s notes following the same compression process used with the repeat mutation 
operator.  
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II.5. Extend operator 
 

The extend operator, as its name suggests, extends the length of a chord. Unlike the compress and repeat operators, 
this operator aims to lower the piece note and note onset densities. It first randomly decides an extension value in 
beats: either half a beat, or a full beat. Then, it identifies the notes that are played (i.e., that are audible) at the end of 
the chord’s duration and increases their duration by the extension value, whilst also increasing overall chord duration. 
 
II.6. Silence operator 
 

Similar to the extend operator, the silence operator lowers overall note and note onset density by extending the 
mutated chord’s duration. However, this operator does not add or extend any notes, instead creating a silence at the 
end of the chord. This mutation emulates the “rest” concept in music theory. 

 
II.7. Single Suspension operator 
 

The single suspension operator affects the notes that make up the chord’s definition (i.e., its root, third, and fifth 
notes) as specified in its frontier. This mutation identifies the note realizations of the frontier notes then randomly 
chooses one of them and delays its entry by a quarter-beat, thus increasing note onset density. Note that since no new 
notes are added through this mutation, and no changes are made to a chord’s duration, note density is preserved. 
However, note onset density increases since notes that would otherwise be played together are now played separately.  
 
II.8. Progressive Entrance operator 
 

This mutation, like the single suspension mutation, also increases note onset density. Unlike the latter operator 
however, progressive entrance rather affects all but one of the frontier notes’ onsets. A simplified activity diagram 
highlighting its behavior is shown in Fig. 26. It randomly chooses a starting distribution, spreading over a half-beat 
duration, indicating the beat timing at which every frontier note should be played. For structural and musical purposes, 
the smallest beat timing unit used for this process is the eighth beat. This process produces 20 possible distributions, 
three of which are shown in the activity diagram for illustration purposes. Due to this distribution’s decision process, 
some frontier notes could be dropped. This occurs when the duration distribution assigns zero values for certain 
frontier notes, which would subsequently produce unexpected and musically diverse results, whilst also lowering note 
density and note onset density in a novel way. Finally, the operator plays the surviving frontier notes sequentially 
(from lowest to highest pitch) following the chosen distribution. 

 

 
 

Fig. 26. Simplified activity diagram describing the progressing entrance mutation operator 
 

II.9. Nota Cambiata operator 
 

The nota cambiata operator emulates the music-theoretical principle of nota cambiata, and is used to decorate the 
highest note of a chord. In a typical nota cambiata realization, the decorated note is preceded by three other notes in 
its key. In order, these are the notes: i) a third above, ii) a second above, and ii) a second below, it in its chord’s key. 
The operator assigns a random duration to each of these notes following the same logic as the one described with the 
progressive entrance operator (i.e., eighth beat time step, half beat total duration), meaning that notes amongst the 
decorative notes could also be dropped. It also delays the decorated note’s onset by half a beat so as to accommodate 
the decoration notes. As a result, this operator increases note density and note onset density in the given musical piece. 
 
II.10. Appoggiatura operator 
 

Another music-theoretically inspired operator, the appoggiatura, precedes the decorated note with an adjacent note in 
its key, typically the note a second above it or a second below it in the given key, analogously to the music-theoretic 
“appoggiatura” decoration. The operator first identifies the highest note in the chord, then retrieves both of its adjacent 
notes in the chord’s key using MUSEC’s KB module, and randomly chooses one of them to add to the first half beat 
of the piece. Similarly to the nota cambiata operator, the decorated note is delayed by half a beat to accommodate the 
new decoration. This operator increases the piece’s note density and note onset density. 
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II.11. Double Appoggiatura operator 
 

A more sophisticated version of the appoggiatura mutation, the double appoggiatura precedes the decorated 
note with both its adjacent notes, in random order. A simplified activity diagram describing its behavior is 
shown in Fig. 27. It first identifies the decorated note and its adjacent notes using MUSEC’s KB module. Yet 
unlike the appoggiatura operator, double appoggiatura does not select one of the two adjacent pitches, but 
rather chooses an order (i.e., which note is played first) and a duration distribution (using eighth beat time units) 
for these two notes over the half-beat they are allocated, following which these notes are sequentially added and 
the decorated note is delayed by half a beat to fit the decoration. To avoid redundancy, the distribution in this 
case cannot include zero values, so that this operator, when applied, does not boil down to the appoggiatura 
operator described earlier. Following this constraint, three possible duration distribution are possible: (0.375, 
0.125), (0.25, 0.25), and (0.125, 0.375), as shown in Fig. 27. 

 

 
Fig. 27. Simplified activity diagram describing the double appoggiatura mutation operator 

 
II.12. Octava operator 
 

The octava operator affects the composition’s average MIDI pitch by shifting a chord’s notes’ MIDI pitches up or 
down by an octave (i.e., it adds/subtracts 12 to the said notes’ MIDI pitches). The choice of octave jump (up or down) 
is stochastically governed by the current average pitch of the chord such that chords with a lower average pitch are 
likelier to be shifted up by an octave, and chords with higher average pitch are likelier to be shifted down an octave.  
 
II.13. Tempo Steal operator 
 

The tempo steal operator, unlike all previous operators, affects two chords, rather than just one. In this mutation, two 
consecutive chords are selected such that one “steals” a certain duration in beats from the other. The steal value used 
in MUSEC is half a beat. This mutation would not take place should the chord that is “stolen” be less than a beat long. 
Essentially, this operation extends a chord by half a beat using the extend operator described previously, and shrinks 
the other by half a beat. Shrinking works using a similar logic to extending, where the notes at the beginning of the 
shrunken chord are shortened by half a beat. This mutation was introduced to break the static duration distribution 
among chords, and to make compositions more rhythmically diverse. 

 
II.14. Passing Notes operator 

 

This mutation also runs on two adjacent chords, by adding notes to the first chord based on the higher note in the 
following chord. A simplified activity diagram describing the passing notes operator is shown in Fig. 28. It checks the 
highest notes in both chords. It then checks if both chords are in the same key and whether both highest notes are less 
than an octave apart so as to ensure a reasonable number of notes is subsequently added. If these conditions are 
verified, MUSEC’s KB module is called to identify all intermediary notes between the two higher notes based on the 
common key. Finally, these notes are added in sequence (over a total duration of half a beat) to the end of the first 
chord following a duration distribution. The latter is decided by randomly allocating duration “chunks” equal to the 
total duration divided by the number of passing notes.  

As with the progressive entrance and nota cambiata duration distributions, zero values are possible and notes 
shorter than an eighth-beat are discarded, which adds variability to this operator’s results. In total,  distributions 
are possible for the addition of n passing notes, resulting in an increase in piece note density and note onset density. 
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Fig. 28. Simplified activity diagram describing the passing notes mutation operator 

 
II.14. Anticipation operator 
 

Also applied to two consecutive chords within the piece, the anticipation operator checks the highest notes of the 
second chord, and then inserts it in the final half-beat of the first chord. This operator emulates the music-theoretical 
concept of “anticipation” and increases both note density and note onset density.  
 
II.15. Tempo Change operator 
 

The tempo change operator targets the piece’s overall tempo. It changes tempo value in increments or decrements of 4 
BPM (beats per minute). The increase/decrease decision is stochastically governed by in the individual’s current 
tempo, where pieces that are slower are likelier to speed up following this mutation, and vice-versa. 
 
II.16. Intensity Change operator 
 

The intensity change operator changes the piece’s current intensity value (i.e., MIDI Velocity) in steps of 20, such that 
pieces that are too quiet are likelier to become louder and vice versa, thereby producing an effect similar to a 
composer’s dynamics. This is the only operator affecting a piece (individual)’s average velocity. 

 
II.17. Modulation/Demodulation operator 

 

This is the most music-theoretic intensive mutation implemented in MUSEC, changing a piece’s current key to a new 
key. In theory, a piece can change to any key of the 23 possible other keys. For the sake of simplicity, MUSEC was 
artificially restricted to modulate only to its neighbor keys, i.e., keys with which it shares an edge (direct connection) 
in the circle of fifths (c.f. Section 4.3.2). Note that we adopt a transient approach to modulations in MUSEC: using a 
common chord between the source and destination key to modulate (other modulation approaches, such as abrupt 
modulation, are not yet included in the current version of the system).  

A simplified activity diagram describing the operator’s behavior is shown in Fig. 29. Modulation checks the last 
chord in the individual and identifies potential destination keys using MUSEC’s KB module. In the event that many 
alternatives are possible, it randomly selects a destination key. Alternatively, when no destination keys are 
compatible, the mutation is aborted. To announce the modulation, the operator also appends two chords to the 
modulated individual: i) the new key’s dominant chord, and ii) the root chord, thereby producing a perfect cadence. 
Finally, the piece’s current key is changed to the new key.  

Demodulation occurs when the individual’s main key is different from the current key, and follows an analogous 
procedure to that of modulation.  

 

 
 

Fig. 29. Simplified activity diagram describing the modulation/demodulation mutation operator 
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